Search results for "57M27"
showing 10 items of 10 documents
The proof of Birman’s conjecture on singular braid monoids
2003
Let B_n be the Artin braid group on n strings with standard generators sigma_1, ..., sigma_{n-1}, and let SB_n be the singular braid monoid with generators sigma_1^{+-1}, ..., sigma_{n-1}^{+-1}, tau_1, ..., tau_{n-1}. The desingularization map is the multiplicative homomorphism eta: SB_n --> Z[B_n] defined by eta(sigma_i^{+-1}) =_i^{+-1} and eta(tau_i) = sigma_i - sigma_i^{-1}, for 1 <= i <= n-1. The purpose of the present paper is to prove Birman's conjecture, namely, that the desingularization map eta is injective.
Vassiliev invariants for braids on surfaces
2000
We show that Vassiliev invariants separate braids on a closed oriented surface, and we exhibit an universal Vassiliev invariant for these braids in terms of chord diagrams labeled by elements of the fundamental group of the considered surface.
A cubic defining algebra for the Links-Gould polynomial
2012
We define a finite-dimensional cubic quotient of the group algebra of the braid group, endowed with a (essentially unique) Markov trace which affords the Links-Grould invariant of knots and links. We investigate several of its properties, and state several conjectures about its structure.
Finite type invariants of knots in homology 3-spheres with respect to null LP-surgeries
2017
We study a theory of finite type invariants for null-homologous knots in rational homology 3-spheres with respect to null Lagrangian-preserving surgeries. It is an analogue in the setting of the rational homology of the Goussarov-Rozansky theory for knots in integral homology 3-spheres. We give a partial combinatorial description of the graded space associated with our theory and determine some cases when this description is complete. For null-homologous knots in rational homology 3-spheres with a trivial Alexander polynomial, we show that the Kricker lift of the Kontsevich integral and the Lescop equivariant invariant built from integrals in configuration spaces are universal finite type i…
On codimension two embeddings up to link-homotopy
2017
We consider knotted annuli in 4-space, called 2-string-links, which are knotted surfaces in codimension two that are naturally related, via closure operations, to both 2-links and 2-torus links. We classify 2-string-links up to link-homotopy by means of a 4-dimensional version of Milnor invariants. The key to our proof is that any 2-string link is link-homotopic to a ribbon one; this allows to use the homotopy classification obtained in the ribbon case by P. Bellingeri and the authors. Along the way, we give a Roseman-type result for immersed surfaces in 4-space. We also discuss the case of ribbon k-string links, for $k\geq 3$.
Birman's conjecture for singular braids on closed surfaces
2003
Let M be a closed oriented surface of genus g≥1, let Bn(M) be the braid group of M on n strings, and let SBn(M) be the corresponding singular braid monoid. Our purpose in this paper is to prove that the desingularization map η : SBn(M)→ℤ[Bn(M)], introduced in the definition of the Vassiliev invariants (for braids on surfaces), is injective.
The HOMFLY-PT polynomials of sublinks and the Yokonuma–Hecke algebras
2016
We describe completely the link invariants constructed using Markov traces on the Yokonuma-Hecke algebras in terms of the linking matrix and the HOMFLYPT polynomials of sublinks.
Generalized Dehn twists in low-dimensional topology
2021
The generalized Dehn twist along a closed curve in an oriented surface is an algebraic construction which involves intersections of loops in the surface. It is defined as an automorphism of the Malcev completion of the fundamental group of the surface. As the name suggests, for the case where the curve has no self-intersection, it is induced from the usual Dehn twist along the curve. In this expository article, after explaining their definition, we review several results about generalized Dehn twists such as their realizability as diffeomorphisms of the surface, their diagrammatic description in terms of decorated trees and the Hopf-algebraic framework underlying their construction. Going t…
Compressed Drinfeld associators
2004
Drinfeld associator is a key tool in computing the Kontsevich integral of knots. A Drinfeld associator is a series in two non-commuting variables, satisfying highly complicated algebraic equations - hexagon and pentagon. The logarithm of a Drinfeld associator lives in the Lie algbera L generated by the symbols a,b,c modulo [a,b]=[b,c]=[c,a]. The main result is a description of compressed associators that satisfy the compressed pentagon and hexagon in the quotient L/[[L,L],[L,L]]. The key ingredient is an explicit form of Campbell-Baker-Hausdorff formula in the case when all commutators commute.
Khovanov homology for signed divides
2009
The purpose of this paper is to interpret polynomial invariants of strongly invertible links in terms of Khovanov homology theory. To a divide, that is a proper generic immersion of a finite number of copies of the unit interval and circles in a [math] –disc, one can associate a strongly invertible link in the [math] –sphere. This can be generalized to signed divides: divides with [math] or [math] sign assignment to each crossing point. Conversely, to any link [math] that is strongly invertible for an involution [math] , one can associate a signed divide. Two strongly invertible links that are isotopic through an isotopy respecting the involution are called strongly equivalent. Such isotopi…