Search results for "57M27"

showing 10 items of 10 documents

The proof of Birman’s conjecture on singular braid monoids

2003

Let B_n be the Artin braid group on n strings with standard generators sigma_1, ..., sigma_{n-1}, and let SB_n be the singular braid monoid with generators sigma_1^{+-1}, ..., sigma_{n-1}^{+-1}, tau_1, ..., tau_{n-1}. The desingularization map is the multiplicative homomorphism eta: SB_n --> Z[B_n] defined by eta(sigma_i^{+-1}) =_i^{+-1} and eta(tau_i) = sigma_i - sigma_i^{-1}, for 1 <= i <= n-1. The purpose of the present paper is to prove Birman's conjecture, namely, that the desingularization map eta is injective.

20F36 57M25. 57M27[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Monoid[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Braid group20F36Group Theory (math.GR)01 natural sciencesBirman's conjecture[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsMathematics - Geometric TopologyMathematics::Group Theory57M25. 57M27Mathematics::Category Theory[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]FOS: MathematicsBraid0101 mathematics[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR][MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]MathematicsConjecturedesingularization010102 general mathematicsMultiplicative functionSigmaGeometric Topology (math.GT)singular braidsInjective function010101 applied mathematicsHomomorphismGeometry and TopologyMathematics - Group TheoryGeometry & Topology
researchProduct

Vassiliev invariants for braids on surfaces

2000

We show that Vassiliev invariants separate braids on a closed oriented surface, and we exhibit an universal Vassiliev invariant for these braids in terms of chord diagrams labeled by elements of the fundamental group of the considered surface.

Surface (mathematics)Fundamental groupLow-dimensional topologyGeneral MathematicsBraid groupGroup Theory (math.GR)braidMathematics::Algebraic TopologyCombinatoricsMathematics - Geometric TopologyMathematics::Group TheoryMathematics::Category TheoryMathematics::Quantum Algebra20F36 (Primary) 57M2757N05 (Secondary)BraidFOS: MathematicssurfaceMathematicsApplied MathematicsGeometric Topology (math.GT)Mathematics::Geometric TopologyFinite type invariantVassiliev Invariantfinite type invariantIsomorphismMathematics - Group TheoryGroup theory
researchProduct

A cubic defining algebra for the Links-Gould polynomial

2012

We define a finite-dimensional cubic quotient of the group algebra of the braid group, endowed with a (essentially unique) Markov trace which affords the Links-Grould invariant of knots and links. We investigate several of its properties, and state several conjectures about its structure.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT][MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA][ MATH.MATH-QA ] Mathematics [math]/Quantum Algebra [math.QA]Links-Gould polynomialGeometric Topology (math.GT)braid groupMathematics::Geometric TopologyMarkov traceMathematics - Geometric Topology57M27[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]Mathematics - Quantum AlgebraFOS: Mathematics[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]quantum invariantsQuantum Algebra (math.QA)knots and links[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]
researchProduct

Finite type invariants of knots in homology 3-spheres with respect to null LP-surgeries

2017

We study a theory of finite type invariants for null-homologous knots in rational homology 3-spheres with respect to null Lagrangian-preserving surgeries. It is an analogue in the setting of the rational homology of the Goussarov-Rozansky theory for knots in integral homology 3-spheres. We give a partial combinatorial description of the graded space associated with our theory and determine some cases when this description is complete. For null-homologous knots in rational homology 3-spheres with a trivial Alexander polynomial, we show that the Kricker lift of the Kontsevich integral and the Lescop equivariant invariant built from integrals in configuration spaces are universal finite type i…

Pure mathematicsAlexander polynomialPrimary: 57M27Homology (mathematics)01 natural sciencesHomology sphereMathematics::Algebraic TopologyMathematics - Geometric TopologyKnot (unit)Mathematics::K-Theory and Homologybeaded Jacobi diagramknot[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesFOS: Mathematics0101 mathematicsInvariant (mathematics)Mathematics::Symplectic Geometry3-manifoldhomology sphereMathematicsBorromean surgerycalculus010102 general mathematicsGeometric Topology (math.GT)Kontsevich integral16. Peace & justiceMathematics::Geometric TopologymanifoldsFinite type invariantnull-move57M27Finite type invariantLagrangian-preserving surgeryEquivariant map010307 mathematical physicsGeometry and Topology3-manifold
researchProduct

On codimension two embeddings up to link-homotopy

2017

We consider knotted annuli in 4-space, called 2-string-links, which are knotted surfaces in codimension two that are naturally related, via closure operations, to both 2-links and 2-torus links. We classify 2-string-links up to link-homotopy by means of a 4-dimensional version of Milnor invariants. The key to our proof is that any 2-string link is link-homotopic to a ribbon one; this allows to use the homotopy classification obtained in the ribbon case by P. Bellingeri and the authors. Along the way, we give a Roseman-type result for immersed surfaces in 4-space. We also discuss the case of ribbon k-string links, for $k\geq 3$.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Pure mathematicsHomotopy010102 general mathematicsClosure (topology)Geometric Topology (math.GT)CodimensionMSC: 57Q45 (primary); 57M27; 57Q35 (secondary)01 natural sciencesMathematics::Geometric TopologyMathematics - Geometric Topology[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesRibbonKey (cryptography)FOS: Mathematics010307 mathematical physicsGeometry and Topology0101 mathematicsLink (knot theory)Mathematics
researchProduct

Birman's conjecture for singular braids on closed surfaces

2003

Let M be a closed oriented surface of genus g≥1, let Bn(M) be the braid group of M on n strings, and let SBn(M) be the corresponding singular braid monoid. Our purpose in this paper is to prove that the desingularization map η : SBn(M)→ℤ[Bn(M)], introduced in the definition of the Vassiliev invariants (for braids on surfaces), is injective.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]MonoidPure mathematics[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Braid group20F36Group Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Mathematics - Geometric TopologyMathematics::Group Theory[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]Mathematics::Category TheoryMathematics::Quantum AlgebraGenus (mathematics)0103 physical sciencesFOS: MathematicsBraid0101 mathematicsMathematics[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT][MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]Algebra and Number TheoryConjecture010102 general mathematicsGeometric Topology (math.GT)20F36;57M27Braid theorySurface (topology)Mathematics::Geometric TopologyInjective function57M27010307 mathematical physicsMathematics - Group Theory
researchProduct

The HOMFLY-PT polynomials of sublinks and the Yokonuma–Hecke algebras

2016

We describe completely the link invariants constructed using Markov traces on the Yokonuma-Hecke algebras in terms of the linking matrix and the HOMFLYPT polynomials of sublinks.

MSC: Primary 57M27: Invariants of knots and 3-manifolds Secondary 20C08: Hecke algebras and their representations 20F36: Braid groups; Artin groups 57M25: Knots and links in $S^3$Pure mathematicsMarkov chainGeneral Mathematics010102 general mathematicsYokonuma-Hecke algebrasGeometric Topology (math.GT)Linking numbers01 natural sciencesMathematics::Geometric TopologyMatrix (mathematics)Mathematics - Geometric TopologyMarkov tracesMathematics::Quantum Algebra[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)010307 mathematical physics0101 mathematicsRepresentation Theory (math.RT)Link (knot theory)Mathematics - Representation TheoryMathematics
researchProduct

Generalized Dehn twists in low-dimensional topology

2021

The generalized Dehn twist along a closed curve in an oriented surface is an algebraic construction which involves intersections of loops in the surface. It is defined as an automorphism of the Malcev completion of the fundamental group of the surface. As the name suggests, for the case where the curve has no self-intersection, it is induced from the usual Dehn twist along the curve. In this expository article, after explaining their definition, we review several results about generalized Dehn twists such as their realizability as diffeomorphisms of the surface, their diagrammatic description in terms of decorated trees and the Hopf-algebraic framework underlying their construction. Going t…

Mathematics - Geometric TopologyMathematics::Group Theory[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]FOS: MathematicsGeometric Topology (math.GT)57M27 20F34 20F14Mathematics::Symplectic GeometryMathematics::Geometric Topology[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]
researchProduct

Compressed Drinfeld associators

2004

Drinfeld associator is a key tool in computing the Kontsevich integral of knots. A Drinfeld associator is a series in two non-commuting variables, satisfying highly complicated algebraic equations - hexagon and pentagon. The logarithm of a Drinfeld associator lives in the Lie algbera L generated by the symbols a,b,c modulo [a,b]=[b,c]=[c,a]. The main result is a description of compressed associators that satisfy the compressed pentagon and hexagon in the quotient L/[[L,L],[L,L]]. The key ingredient is an explicit form of Campbell-Baker-Hausdorff formula in the case when all commutators commute.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Hexagon equationPure mathematicsCampbell–Baker–Hausdorff formulaKnotLie algebraModuloCompressed Vassiliev invariantsPentagon equation01 natural sciencessymbols.namesakeMathematics - Geometric TopologyChord diagramsExtended Bernoulli numbers[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]Mathematics::Quantum Algebra0103 physical sciencesLie algebraMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)0101 mathematicsAlgebraic numberBernoulli numberQuotientMathematics[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]Zeta functionDiscrete mathematics[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA]Algebra and Number TheoryVassiliev invariants[ MATH.MATH-QA ] Mathematics [math]/Quantum Algebra [math.QA]Drinfeld associator57M25 57M27 11B68 17B01010102 general mathematicsAssociatorQuantum algebraGeometric Topology (math.GT)Kontsevich integralRiemann zeta functionsymbols[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]Compressed associator010307 mathematical physicsBernoulli numbers
researchProduct

Khovanov homology for signed divides

2009

The purpose of this paper is to interpret polynomial invariants of strongly invertible links in terms of Khovanov homology theory. To a divide, that is a proper generic immersion of a finite number of copies of the unit interval and circles in a [math] –disc, one can associate a strongly invertible link in the [math] –sphere. This can be generalized to signed divides: divides with [math] or [math] sign assignment to each crossing point. Conversely, to any link [math] that is strongly invertible for an involution [math] , one can associate a signed divide. Two strongly invertible links that are isotopic through an isotopy respecting the involution are called strongly equivalent. Such isotopi…

Khovanov homologyPure mathematicsDivides[ MATH.MATH-AT ] Mathematics [math]/Algebraic Topology [math.AT]Homology (mathematics)01 natural scienceslaw.inventionMorse signed dividessymbols.namesakelawEuler characteristic0103 physical sciencesFOS: MathematicsAlgebraic Topology (math.AT)Mathematics - Algebraic Topology0101 mathematicsInvariant (mathematics)Finite setMathematicsKhovanov homology010102 general mathematics16. Peace & justiceInvertible matrix57M27[MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT]IsotopysymbolsStrongly invertible links010307 mathematical physicsGeometry and TopologyVector space
researchProduct