0000000000482708

AUTHOR

Franck Panabières

showing 6 related works from this author

Elicitins, proteinaceous elicitors of plant defense, are a new class of sterol carrier proteins

1998

Some phytopathogenic fungi within Phytophthora species are unable to synthesize sterols and therefore must pick them up from the membranes of their host-plant, using an unknown mechanism. These pseudo-fungi secrete elicitins which are small hydrophilic cystein-rich proteins. The results show that elicitins studied interact with dehydroergosterol in the same way, but with some time-dependent differences. Elicitins have one binding site with a similar strong affinity for dehydroergosterol. Using a non-steroid hydrophobic fluorescent probe, we showed that phytosterols are able to similarly bind to elicitins. Moreover, elicitins catalyze sterol transfer between phospholipidic artificial membran…

0106 biological sciencesPhytophthora[SDV]Life Sciences [q-bio]Biophysics01 natural sciencesBiochemistryFungal Proteins03 medical and health sciencesNaphthalenesulfonatesErgosterolPlant defense against herbivoryExtracellularSecretionBinding sitePERSPECTIVEMolecular BiologyPhospholipidsComputingMilieux_MISCELLANEOUS030304 developmental biologyFluorescent Dyes0303 health sciencesBinding SitesbiologyfungiAlgal ProteinsPhytosterolsElicitinBiological TransportCell BiologyPlantsbiology.organism_classificationSterolCell biology[SDV] Life Sciences [q-bio]KineticsMembraneSpectrometry FluorescenceBiochemistryPhytophthoraCarrier Proteins010606 plant biology & botanyProtein Binding
researchProduct

Mediation of Elicitin Activity on Tobacco Is Assumed by Elicitin-Sterol Complexes

2001

Elicitins secreted by phytopathogenic Phytophthora spp. are proteinaceous elicitors of plant defense mechanisms and were demonstrated to load, carry, and transfer sterols between membranes. The link between elicitor and sterol-loading properties was assessed with the use of site-directed mutagenesis of the 47 and 87 cryptogein tyrosine residues, postulated to be involved in sterol binding. Mutated cryptogeins were tested for their ability to load sterols, bind to plasma membrane putative receptors, and trigger biological responses. For each mutated elicitin, the chemical characterization of the corresponding complexes with stigmasterol (1:1 stoichiometry) demonstrated their full functionali…

Models MolecularPhytophthora0106 biological sciencesTime FactorsProtein Conformation[SDV]Life Sciences [q-bio]Receptors Cell SurfaceBiologyModels Biological01 natural sciencesArticleHost-Parasite InteractionsFungal Proteins03 medical and health sciencesTobaccoProtein IsoformsBinding siteReceptorMolecular BiologyComputingMilieux_MISCELLANEOUSCells CulturedPlant DiseasesPlant Proteins030304 developmental biology0303 health sciencesBinding SitesAlgal ProteinsCell MembraneProteinsElicitinCell BiologyHydrogen-Ion ConcentrationLigand (biochemistry)Receptor–ligand kineticsSterolElicitor[SDV] Life Sciences [q-bio]SterolsBiochemistryTyrosineCalciumSterol bindingProtein Binding010606 plant biology & botanyMolecular Biology of the Cell
researchProduct

Responses of tobacco to elicitins, proteins from Phytophthora spp. eliciting acquired resistance

1994

With the exception of Phytophthora parasitica var. nicotianae (Ppn), the tobacco black-shank causing agent, Phytophthoras give rise to non-host interactions with tobacco. The resulting local hypersensitive response (HR) is accompanied by necrotic spots on the leaves at distance from the infection site [1]. Low molecular weight proteins are excreted by these Phytophthoras, both in planta and in vitro. They form a family of highly homologous holoproteins, called elicitins [2]. Tobacco plants treated with purified elicitins develop necrotic symptoms similar to those induced by the live fungus, and become resistant to further inoculation with Ppn [3]. Elicitin-treated tobacco represent an attra…

0106 biological sciencesHypersensitive response0303 health sciencesbiologySpotsInoculation[SDV]Life Sciences [q-bio]fungifood and beveragesPlant physiologyFungusbiology.organism_classification01 natural sciencesIn vitroMicrobiology[SDV] Life Sciences [q-bio]03 medical and health sciencesAcquired resistancePhytophthoraComputingMilieux_MISCELLANEOUSRESISTANCE030304 developmental biology010606 plant biology & botany
researchProduct

Are elicitins cryptograms in plant-oomycete communications?

1999

Stimulation of plant natural defenses is an important challenge in phytoprotection prospects. In that context, elicitins, which are small proteins secreted by Phytophthora and Pythium species, have been shown to induce a hypersensitive-like reaction in tobacco plants. Moreover, these plants become resistant to their pathogens, and thus this interaction constitutes an excellent model to investigate the signaling pathways leading to plant resistance. However, most plants are not reactive to elicitins, although they possess the functional signaling pathways involved in tobacco responses to elicitin. The understanding of factors involved in this reactivity is needed to develop agronomic applica…

Phytophthora0106 biological sciences[SDV]Life Sciences [q-bio]Molecular Sequence DataMutagenesis (molecular biology technique)Context (language use)01 natural sciencesHost-Parasite InteractionsEvolution MolecularFungal Proteins03 medical and health sciencesCellular and Molecular NeuroscienceErgosterolGene Expression Regulation FungalTobaccoPlant defense against herbivoryAmino Acid SequenceMolecular BiologyPhylogenyComputingMilieux_MISCELLANEOUSPlant Diseases030304 developmental biologyPharmacologyOomycete0303 health sciencesBase SequencebiologyAlgal Proteinsfungifood and beveragesElicitinCell Biologybiology.organism_classification[SDV] Life Sciences [q-bio]Plants ToxicOomycetesBiochemistryMolecular MedicinePhytophthoraSequence AlignmentPlant lipid transfer proteinsFunction (biology)BiotechnologySignal Transduction010606 plant biology & botany
researchProduct

Crystallization and preliminary X-ray studies of oligandrin, a sterol-carrier elicitor fromPythium oligandrum

2000

Oligandrin is a 10 kDa acidic protein produced by the fungus micromycete Pythium oligandrum and is a member of the alpha-elicitin group, with sterol- and lipid-carrier properties. Oligandrin has been crystallized at 290 K using PEG 4000 as a precipitant. A cholesterol complex was obtained under the same conditions. The space group of the crystals at low temperature (100 K) is C222, with unit-cell parameters a = 94.0, b = 171.1, c = 55.3 A. Four molecules are present in the asymmetric unit. Data from the free and cholesterol-complexed forms were recorded at synchrotron sources to resolutions of 2.4 (uncomplexed) and 1.9 A (complexed), respectively.

Protein ConformationPythiumElicitinGeneral MedicineBiologyCrystallography X-Raybiology.organism_classificationSterolElicitorlaw.inventionFungal ProteinsSterolsCrystallographyCholesterolSterol carrier proteinStructural BiologylawPEG ratioIntercellular Signaling Peptides and ProteinsMoleculeElectrophoresis Polyacrylamide GelCrystallizationCarrier ProteinsCrystallizationPythium oligandrumActa Crystallographica Section D Biological Crystallography
researchProduct

Migration of the fungal protein cryptogein within tobacco plants

1992

International audience

[SDV] Life Sciences [q-bio][SDV]Life Sciences [q-bio]ComputingMilieux_MISCELLANEOUS
researchProduct