6533b856fe1ef96bd12b1e9f
RESEARCH PRODUCT
Are elicitins cryptograms in plant-oomycete communications?
Ml MilatFranck PanabièresMichel PonchetYves TirillyJ.-l. MontilletVladimír MikešC. TriantaphylidesL. SutyJean-pierre Bleinsubject
Phytophthora0106 biological sciences[SDV]Life Sciences [q-bio]Molecular Sequence DataMutagenesis (molecular biology technique)Context (language use)01 natural sciencesHost-Parasite InteractionsEvolution MolecularFungal Proteins03 medical and health sciencesCellular and Molecular NeuroscienceErgosterolGene Expression Regulation FungalTobaccoPlant defense against herbivoryAmino Acid SequenceMolecular BiologyPhylogenyComputingMilieux_MISCELLANEOUSPlant Diseases030304 developmental biologyPharmacologyOomycete0303 health sciencesBase SequencebiologyAlgal Proteinsfungifood and beveragesElicitinCell Biologybiology.organism_classification[SDV] Life Sciences [q-bio]Plants ToxicOomycetesBiochemistryMolecular MedicinePhytophthoraSequence AlignmentPlant lipid transfer proteinsFunction (biology)BiotechnologySignal Transduction010606 plant biology & botanydescription
Stimulation of plant natural defenses is an important challenge in phytoprotection prospects. In that context, elicitins, which are small proteins secreted by Phytophthora and Pythium species, have been shown to induce a hypersensitive-like reaction in tobacco plants. Moreover, these plants become resistant to their pathogens, and thus this interaction constitutes an excellent model to investigate the signaling pathways leading to plant resistance. However, most plants are not reactive to elicitins, although they possess the functional signaling pathways involved in tobacco responses to elicitin. The understanding of factors involved in this reactivity is needed to develop agronomic applications. In this review, it is proposed that elicitins could interact with regulating cell wall proteins before they reach the plasma membrane. Consequently, the plant reactivity or nonreactivity status could result from the equilibrium reached during this interaction. The possibility of overexpressing the elicitins directly from genomic DNA in Pichia pastoris allows site-directed mutagenesis experiments and structure/function studies. The recent discovery of the sterol carrier activity of elicitins brings a new insight on their molecular activity. This constitutes a crucial property, since the formation of a sterol-elicitin complex is required to trigger the biological responses of tobacco cells and plants. Only the elicitins loaded with a sterol are able to bind to their plasmalemma receptor, which is assumed to be an allosteric calcium channel. Moreover, Phytophthora and Pythium do not synthesize the sterols required for their growth and their fructification, and elicitins may act as shuttles trapping the sterols from the host plants. Sequence analysis of elicitin genes from several Phytophthora species sheds unexpected light on the phylogenetic relationships among the genus, and suggests that the expression of elicitins is under tight regulatory control. Finally, general involvement of these lipid transfer proteins in the biology of Pythiaceae, and in plant defense responses, is discussed. A possible scheme for the coevolution between Phytophthora and tobacco plants is approached.
year | journal | country | edition | language |
---|---|---|---|---|
1999-01-01 |