Evaluation of advanced silica packings for the separation of biopolymers by high-performance liquid chromatography
Abstract The linear solvent strength model of Snyder was applied to describe fast protein separations on 2.1-μm non-porous, silica-based strong anion exchangers. It was demonstrated on short columns packed with these anion exchangers that (i) a substantially higher resolution of proteins and nucleotides was obtained at gradient times of less than 5 min than on porous anion exchangers; (ii) the low external surface area of the non-porous anion exchanger is not a critical parameter in analytical separations and (iii) μg-amounts of enzymes of high purity and full biological activity were isolated.