0000000000485908

AUTHOR

Domenico Giuliano

Universal scaling for the quantum Ising chain with a classical impurity

We study finite size scaling for the magnetic observables of an impurity residing at the endpoint of an open quantum Ising chain in a transverse magnetic field, realized by locally rescaling the magnetic field by a factor $\mu \neq 1$. In the homogeneous chain limit at $\mu = 1$, we find the expected finite size scaling for the longitudinal impurity magnetization, with no specific scaling for the transverse magnetization. At variance, in the classical impurity limit, $\mu = 0$, we recover finite scaling for the longitudinal magnetization, while the transverse one basically does not scale. For this case, we provide both analytic approximate expressions for the magnetization and the susceptib…

research product

Universal scaling of a classical impurity in the quantum Ising chain

We study finite size scaling for the magnetic observables of an impurity residing at the endpoint of an open quantum Ising chain in a transverse magnetic field, realized by locally rescaling the magnetic field by a factor $\mu \neq 1$. In the homogeneous chain limit at $\mu = 1$, we find the expected finite size scaling for the longitudinal impurity magnetization, with no specific scaling for the transverse magnetization. At variance, in the classical impurity limit, $\mu = 0$, we recover finite scaling for the longitudinal magnetization, while the transverse one basically does not scale. For this case, we provide both analytic approximate expressions for the magnetization and the susceptib…

research product