0000000000486208
AUTHOR
Iria R. Arias
A Simple Entropic-Driving Separation Procedure of Low-Size Silver Clusters, Through Interaction with DNA
Abstract Synthesis and purification of metal clusters without strong binding agents by wet chemical methods are very attractive for their potential applications in many research areas. However, especially challenging is the separation of uncharged clusters with only a few number of atoms, which renders the usual techniques very difficult to apply. Herein, we report the first efficient separation of Ag2 and Ag3 clusters using the different entropic driving forces when such clusters interact with DNA, into which Ag3 selectively intercalates. After sequential dialysis of the samples and denaturalizing the DNA‐Ag3 complex, pure Ag2 can be found in the dialysate after extensive dialysis. Free Ag…
Ag5 nanoclusters with dual catalytic antiradical activities
Silver nanoclusters of five atoms (Ag5) display outstanding catalytic activities for the deactivation of radicals. Using 2,2-diphenyl-1‑picrylhydrazyl (DPPH) radical as a model system, we observed a fast radical reduction to DPPH anions using only [Ag5] 3 to 4 orders of magnitude less than [DPPH]. Moreover, nanoclusters remain stable at the end of the reaction, and can deactivate again DPPH radicals at the same rate, indicating that they act as anti-radical catalysts. The radical scavenger catalytic activity of Ag5 proceeds selectively through the oxidation of methanol (used to dissolve the radical) to formaldehyde, which is supported by DFT calculations. The obtained catalytic rate constan…
Silver Clusters of Five Atoms as Highly Selective Antitumoral Agents Through Irreversible Oxidation of Thiols
Low atomicity clusters present properties dependent on the size, due to the quantum confinement, with well-defined electronic structures and high stability. Here it is shown that Ag5 clusters catalyze the complete oxidation of sulfur to S+6. Ag5 catalytic activity increases with different oxidant species in the order O2 ≪ H2O2 < OH•. Selective oxidation of thiols on the cysteine residues of glutathione and thioredoxin is the primary mechanism human cells have to maintain redox homeostasis. Contingent upon oxidant concentration, Ag5 catalyzes the irreversible oxidation of glutathione and thioredoxin, triggering apoptosis. Modification of the intracellular environment to a more oxidized state…