0000000000495891
AUTHOR
P. J. Woods
Simultaneous measurement of β-delayed proton and γ decay of 27P
This is the first study of 27P to measure both the β-delayed proton and β-delayed γ decays. While no new proton groups in the astrophysically interesting energy region of 300–400 keV were observed, a new upper limit on the proton branching of 0.16% was estimated. Several new γ -ray lines were observed, mainly coming from the isobaric analog state in 27Si, which has been assigned a more accurate energy value of 6638(1) keV. peerReviewed
β−-delayed spectroscopy of neutron-rich tantalum nuclei: Shape evolution in neutron-rich tungsten isotopes
The low-lying structure of W-188,W-190,W-192 has been studied following beta decays of the neutron-rich mother nuclei Ta-188,Ta-190,Ta-192 produced following the projectile fragmentation of a 1-GeV-per-nucleon Pb-208 primary beam on a natural beryllium target at the GSI Fragment Separator. The beta-decay half-lives of Ta-188, Ta-190, and Ta-192 have been measured, with gamma-ray decays of low-lying states in their respective W daughter nuclei, using heavy-ion beta-gamma correlations and a position-sensitive silicon detector setup. The data provide information on the low-lying excited states in W-188, W-190, and W-192, which highlight a change in nuclear shape at W-190 compared with that of …
Superallowed α Decay to Doubly Magic Sn100
We report the first observation of the ^{108}Xe→^{104}Te→^{100}Sn α-decay chain. The α emitters, ^{108}Xe [E_{α}=4.4(2) MeV, T_{1/2}=58_{-23}^{+106} μs] and ^{104}Te [E_{α}=4.9(2) MeV, T_{1/2}<18 ns], decaying into doubly magic ^{100}Sn were produced using a fusion-evaporation reaction ^{54}Fe(^{58}Ni,4n)^{108}Xe, and identified with a recoil mass separator and an implantation-decay correlation technique. This is the first time α radioactivity has been observed to a heavy self-conjugate nucleus. A previous benchmark for study of this fundamental decay mode has been the decay of ^{212}Po into doubly magic ^{208}Pb. Enhanced proton-neutron interactions in the N=Z parent nuclei may result …
Quasifreeπ+production studied using theC12(γ, π+n)B11reaction in theΔ(1232)resonance region
Results are presented from a coincidence study of the {sup 12}C({gamma},{pi}{sup +}{ital n}){sup 11}B quasifree pion production reaction made in the {Delta}-resonance region using tagged photons. Cross sections for reactions originating on 1{ital p}-shell protons are found to be significantly larger than predicted by calculations based on quasifree pion production. It is suggested that more sophisticated calculations, perhaps including medium effects, may be required to reproduce the data. {copyright} {ital 1996 The American Physical Society.}
β-Delayed and isomer spectroscopy of neutron-rich Ta and W isotopes
Decays of neutron-rich A ~ 190 nuclei have been studied following projectile fragmentation of a 208Pb beam on a 9Be target at the GSI Fragment Separator. Gamma-ray decays from previously reported isomeric states in 188Ta, 190W and 192, 193Re were used as internal calibrations for the particle identification analysis, together with the identification of previously unreported isomeric decays in 189Ta and 191W. The current work also identifies β-delayed γ rays following the decay of 188Ta to 188W for the first time. Algora, Alejandro, Alejandro.Algora@ific.uv.es ; Molina Palacios, Francisco Manuel, Francisco.Molina@ific.uv.es; Rubio Barroso, Berta, Berta.Rubio@ific.uv.es
Nature of seniority symmetry breaking in the semimagic nucleus $^{94}Ru$
Physical review / C 105(3), L031304 (2022). doi:10.1103/PhysRevC.105.L031304
β-delayedγ-ray spectroscopy of203,204Au and200−202Pt
The beta decay of five heavy, neutron-rich nuclei, Pt-203,Pt-204 and Ir200-202, has been investigated following relativistic cold fragmentation reactions of lead projectiles using the FRS + RISING setup at GSI. This paper reports on the study of the low-lying states in the decay daughter nuclei Au-203,Au-204 and Pt200-202. The characteristic gamma rays for each nucleus have been determined using beta-delayed gamma-ray spectroscopy. Tentative level schemes, relative intensities, and apparent beta feedings are provided. These data are compared with shell-model calculations, which indicate a substantial contribution to the total beta strength from high-energy first-forbidden beta-decay transit…
New reaction rates for the destruction of $^7$Be during big bang nucleosynthesis measured at CERN/n_TOF and their implications on the cosmological lithium problem
New measurements of the7Be(n,α)4He and7Be(n,p)7Li reaction cross sections from thermal to keV neutron energies have been recently performed at CERN/n_TOF. Based on the new experimental results, astrophysical reaction rates have been derived for both reactions, including a proper evaluation of their uncertainties in the thermal energy range of interest for big bang nucleosynthesis studies. The new estimate of the7Be destruction rate, based on these new results, yields a decrease of the predicted cosmological7Li abundance insufficient to provide a viable solution to the cosmological lithium problem.
Multipleβ−decaying states in194Re: Shape evolution in neutron-rich osmium isotopes
decays from heavy, neutron-rich nuclei with A∼190 have been investigated following their production via the relativistic projectile fragmentation of an E/A=1 GeV 208Pb primary beam on a ∼2.5 g/cm2 9Be target. The reaction products were separated and identified using the GSI FRagment Separator (FRS) and stopped in the RISING active stopper. γ decays were observed and correlated with these secondary ions on an event-by-event basis such that γ-ray transitions following from both internal (isomeric) and β decays were recorded. A number of discrete, β-delayed γ-ray transitions associated with β decays from 194Re to excited states in 194Os have been observed, including previously reported decays …
The beta-delayed proton and gamma decay of 27P for nuclear astrophysics
The creation site of 26Al is still under debate. It is thought to be produced in hydrogen burning and in explosive helium burning in novae and supernovae, and possibly also in the H-burning in outer shells of red giant stars. Also, the reactions for its creation or destruction are not completely known. When 26Al is created in novae, the reaction chain is: 24Mg(p, γ) 25Al(β +ν) 25Mg(p, γ) 26Al, but this chain can be by-passed by another chain, 25Al(p, γ) 26Si(p, γ) 27P and it can also be destroyed directly. The reaction 26mAl(p, γ) 27Si∗ is another avenue to bypass the production of 26Al and it is dominated by resonant capture. We find and study these resonances by an indirect method, throug…
The Nuclear astrophysics program at n_TOF (CERN)
An important experimental program on Nuclear Astrophysics is being carried out at the n_TOF since several years, in order to address the still open issues in stellar and primordial nucleosynthesis. Several neutron capture reactions relevant to s-process nucleosynthesis have been measured so far, some of which on important branching point radioisotopes. Furthermore, the construction of a second experimental area has recently opened the way to challenging measurements of (n, charged particle) reactions on isotopes of short half-life. The Nuclear Astrophysics program of the n_TOF Collaboration is here described, with emphasis on recent results relevant for stellar nucleosynthesis, stellar neut…
Experimental study ofβ-delayed proton decay ofAl23for nucleosynthesis in novae
The $\ensuremath{\beta}$-delayed $\ensuremath{\gamma}$ and proton decay of $^{23}\mathrm{Al}$ has been studied with an alternative detector setup at the focal plane of the momentum achromat recoil separator MARS at Texas A University. We could detect protons down to an energy of 200 keV and determine the corresponding branching ratios. Contrary to results of previous $\ensuremath{\beta}$-decay studies, no strong proton intensity from the decay of the isobaric analog state (IAS) of the $^{23}\mathrm{Al}$ ground state at ${E}_{x}=7803$ keV in $^{23}\mathrm{Mg}$ was observed. Instead we assign the observed low-energy group ${E}_{p,\mathrm{c}.\mathrm{m}.}=206$ keV to the decay from a state that…
The Beta-Delayed Proton and Gamma Decay of 27P for Nuclear Astrophysics
The creation site of 26Al is still under debate. It is thought to be produced in hydrogen burning and in explosive helium burning in novae and supernovae, and possibly also in the H-burning in outer shells of red giant stars. Also, the reactions for its creation or destruction are not completely known. When 26Al is created in novae, the reaction chain is: 24Mg(p,γ)25AI(β+v)25 Mg(p,γ)26Al, but this chain can be by-passed by another chain, 25Al(p, γ)26Si(p, γ)27P and it can also be destroyed directly. The reaction 26m Al (p, γ)27 Si* is another avenue to bypass the production of 26Al and it is dominated by resonant capture. We find and study these resonances by an indirect method, through the…
Proton radioactivity of 117La
A new more precise measurement of the ground-state proton decay of 117La is presented @Ep 5806(5) keV, t1/2,p526(3) ms#. 117La was produced via the p4n fusion-evaporation channel by bombarding a 64Zn target with 310 and 295 MeV 58Ni beams. The proton decay rate is consistent with emission from a prolate deformed 3/21 or 3/22 Nilsson state. No evidence is found for a previously reported proton decay from a high spin isomer in 117La. An upper limit for the production cross section for proton decay of 116La at a bombarding energy of 325 MeV was established. peerReviewed
Half-Life Systematics across theN=126Shell Closure: Role of First-Forbidden Transitions in theβDecay of Heavy Neutron-Rich Nuclei
This Letter reports on a systematic study of β-decay half-lives of neutron-rich nuclei around doubly magic Pb208. The lifetimes of the 126-neutron shell isotone Pt204 and the neighboring Ir200-202, Pt203, Au204 are presented together with other 19 half-lives measured during the "stopped beam" campaign of the rare isotope investigations at GSI collaboration. The results constrain the main nuclear theories used in calculations of r-process nucleosynthesis. Predictions based on a statistical macroscopic description of the first-forbidden β strength reveal significant deviations for most of the nuclei with N<126. In contrast, theories including a fully microscopic treatment of allowed and first…
Measurement of the Pu-242(n,gamma) cross section from thermal to 500 keV at the Budapest research reactor and CERN n_TOF-EAR1 facilities
The design and operation of innovative nuclear systems requires a better knowledge of the capture and fission cross sections of the Pu isotopes. For the case of capture on 242Pu, a reduction of the uncertainty in the fast region down to 8-12% is required. Moreover, aiming at improving the evaluation of the fast energy range in terms of average parameters, the OECD NEA High Priority Request List (HPRL) requests high-resolution capture measurements with improved accuracy below 2 keV. The current uncertainties also affect the thermal point, where previous experiments deviate from each other by 20%. A fruitful collaboration betwen JGU Mainz and HZ Dresden-Rossendorf within the EC CHANDA project…
The BRIKEN Project: Extensive Measurements of $\beta $-delayed Neutron Emitters for the Astrophysical r Process
An ambitious program to measure decay properties, primarily β-delayed neutron emission probabilities and half-lives, for a significant number of nuclei near or on the path of the rapid neutron capture process, has been launched at the RIKEN Nishina Center. We give here an overview of the status of the project.
Study of excited states of [sup 31]S through beta-decay of [sup 31]Cl for nucleosynthesis in ONe novae
We have produced an intense and pure beam of 31Cl with the MARS Separator at the Texas A&M University and studied β‐decay of 31Cl by implanting the beam into a novel detector setup, capable of measuring β‐delayed protons and γ‐rays simultaneously. From our data, we have established decay scheme of 31Cl, found resonance energies with 1 keV precision, have measured its half‐life with under 1% accuracy, found its Isobar Analog State decay and by using the IMME obtained an improved mass excess for its ground state. In this contribution, a description of the used method along with selected preliminary experimental results are given and their relevance for novae nucleosynthesis discussed.
βDelayed γRay spectroscopy of heavy neutron rich nuclei “south” of lead
Relativistic projectile fragmentation of a 208Pb primary beam has been used to produce neutron-rich nuclei with proton-holes relative to the Z = 82 shell closure, i.e., “south” of Pb. βDelayed γRay spectroscopy allows to investigate the structural properties of such nuclei with A ~ 195 → 205. The current work presents transitions de-exciting excited states in 204Au, which are the first spectroscopic information on this N = 125 isotone. Agramunt Ros, Jorge, Jorge.Agramunt@ific.uv.es ; Algora, Alejandro, Alejandro.Algora@ific.uv.es ; Molina Palacios, Francisco Manuel, Francisco.Molina@ific.uv.es ; Rubio Barroso, Berta, Berta.Rubio@ific.uv.es
Radiative neutron capture on Pu242 in the resonance region at the CERN n_TOF-EAR1 facility
The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of Pu242 there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluat…
β-delayed neutron emission of r-process nuclei at the N = 82 shell closure
This experiment was performed at RI Beam Factory operated by RIKEN Nishina Center and CNS, University of Tokyo. O.H, T.D, P.J.W, C.G.B, C.J.G and D.K would like to thank STFC, UK for support. This research was sponsored in part by the Office of Nuclear Physics, U.S. Department of Energy under Award No. DE-FG02-96ER40983 (UTK) and DEAC05-00OR22725 (ORNL), and by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Award No. DENA0002132. This work was supported by National Science Foundation under Grants No. PHY-1430152 (JINA Center for the Evolution of the Elements), No. PHY-1565546 (NSCL), and No. PHY-1714153 (Central Michigan Uni…
Decay spectroscopy for nuclear astrophysics: β- and β-delayed proton decay
In several radiative proton capture reactions important in novae and XRBs, the resonant parts play the capital role. We use decay spectroscopy techniques to find these resonances and study their properties. We have developed techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei produced and separated with the MARS recoil spectrometer of Texas A&M University. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. This allows us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measu…
Decay Spectroscopy for Nuclear Astrophysics: β-delayed Proton Decay
In several radiative proton capture reactions important in novae and XRBs, the resonant parts play the capital role. We use decay spectroscopy techniques to find these resonances and study their properties. We have developed techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei produced and separated with the MARS recoil spectrometer of Texas A&M University. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. This allows us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measu…
Characterization and First Test of an i-TED Prototype at CERN n_TOF
International audience; Neutron capture cross section measurements are of fundamental importance for the study of the slow process of neutron capture, so called s-process. This mechanism is responsible for the formation of most elements heavier than iron in the Universe. To this aim, installations and detectors have been developed, as total energy radiation C$_{6}$ D$_{6}$ detectors. However, these detectors can not distinguish between true capture gamma rays from the sample under study and neutron induced gamma rays produced in the surroundings of the setup. To improve this situation, we propose (Domingo Pardo in Nucl Instr Meth Phys Res A 825:78–86, 2016, [1]) the use of the Compton princ…
Proton-proton correlations observed in two-proton decay of $^{19}$Mg and $^{16}$Ne
Proton-proton correlations were observed for the two-proton decays of the ground states of $^{19}$Mg and $^{16}$Ne. The trajectories of the respective decay products, $^{17}$Ne+p+p and $^{14}$O+p+p, were measured by using a tracking technique with microstrip detectors. These data were used to reconstruct the angular correlations of fragments projected on planes transverse to the precursor momenta. The measured three-particle correlations reflect a genuine three-body decay mechanism and allowed us to obtain spectroscopic information on the precursors with valence protons in the $sd$ shell.
Very Low Energy Protons From the Beta Decay of Proton Rich Nuclei For Nuclear Astrophysics
The MARS group at TAMU has developed a new experimental technique to measure very low energy protons from β-delayed proton-decay of proton-rich nuclei produced and separated with the MARS recoil spectrometer at TAMU. Recently we have investigated the β-delayed p-decays of 23Al [1], and 31Cl [2], and obtained information on the resonances in the 22Na(p,γ)23Mg and 30P(p,γ) 31S reactions, respectively. These reactions are important in explosive H-burning in Novae [3]. Recently an experiment looking at the β-delayed p-decay of 20Mg was also done in order to obtain information on resonances in the 19Ne(p,γ)20Na reaction. A simple setup consisting of a telescope made of a thin double sided Si str…
Effect of a Triaxial Nuclear Shape on Proton Tunneling: The Decay and Structure of 145Tm
Gamma rays deexciting states in the proton emitter 145Tm were observed using the recoil-decay tagging method. The 145Tm ground-state rotational band was found to exhibit the properties expected for an h{11/2} proton decoupled band. In addition, coincidences between protons feeding the 2{+} state in 144Er and the 2{+}-->0{+} gamma-ray transition were detected, the first measurement of this kind, leading to a more precise value for the 2{+} excitation energy of 329(1) keV. Calculations with the particle-rotor model and the core quasiparticle coupling model indicate that the properties of the pi{11/2} band and the proton-decay rates in 145Tm are consistent with the presence of triaxiality with…
Coulomb excitation of Na-29,Na-30: Mapping the borders of the island of inversion
Seidlitz, M., et all ; 10 pags. ; 9 figs. ; 1 tab. ; PACS number(s): 21.60.Cs, 23.20.Js, 25.70.De, 29.38.Gj
Study of the Ti-44(alpha, p)V-47 reaction and implications for core collapse supernovae
The underlying physics triggering core collapse supernovae is not fully understood but observations of material ejected during such events helps to solve this puzzle. In particular, several satellite based γ -ray observations of the isotope 44Ti have been reported recently. Conveniently, the amount of this isotope in stellar ejecta is thought to depend critically on the explosion mechanism. The most influential reaction to the amount of 44Ti in supernovae is 44Ti(α, p)47V. Here we report on a direct study of this reaction conducted at the REX-ISOLDE facility, CERN. The experiment was performed with a 44Ti beam at Elab = 2.16 MeV/u, corresponding to an energy distribution, for reacting α-par…
β-decay of [sup 23]Al and nova nucleosynthesis
We have studied the β‐decay of 23Al with a novel detector setup at the focal plane of the MARS separator at the Texas A&M University to resolve existing controversies about the proton intensities of the IAS in 23Mg and to determine the absolute proton branching ratios by combining our results to the latest γ‐decay data. Experimental technique, results and the relevance for nova nucleosynthesis are discussed.
Recoil Decay Tagging Study Of Transitional Proton Emitters 145,146,147Tm
International audience; Gamma rays from the transitional proton emitting nuclei 145,146,147Tm have been observed using the recoil-decay tagging technique. The ground state band of 147Tm was confirmed and extended and the unfavoured signature sequence was observed. A ground state rotational band with properties of a decoupled h11/2 band was observed in 145Tm. In addition coincidences between the proton fine structure line and the 2+-->0+ gamma-ray transition in 144Er were detected at the focal plane of the FMA. This is the first time that coincidences between proton radioactive decays and gamma rays have been seen. The particle decay of 146Tm has been measured with improved statistics and a …
Study of the Ti44(α,p)V47 reaction and implications for core collapse supernovae
The underlying physics triggering core collapse supernovae is not fully understood but observations of material ejected during such events helps to solve this puzzle. In particular, several satellite based γ-ray observations of the isotope 44Ti have been reported recently. Conveniently, the amount of this isotope in stellar ejecta is thought to depend critically on the explosion mechanism. The most influential reaction to the amount of 44Ti in supernovae is Ti44(α,p)V47. Here we report on a direct study of this reaction conducted at the REX-ISOLDE facility, CERN. The experiment was performed with a 44Ti beam at Elab = 2.16MeV/u, corresponding to an energy distribution, for reacting α-partic…