0000000000499687

AUTHOR

A. Giganon

showing 4 related works from this author

Shell evolution of $N=40$ isotones towards $^{60}$Ca: First spectroscopy of $^{62}$Ti

2020

7 pags., 4 figs., 1 tab.

Nuclear and High Energy PhysicsNuclear TheoryNuclear TheoryAb initioFOS: Physical sciencesShell evolution[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesShell evolution ; Radioactive beams ; Gamma-ray spectroscopyNuclear Theory (nucl-th)Gamma-ray spectroscopy; Radioactive beams; Shell evolution0103 physical sciencesddc:530Gamma-ray spectroscopyNuclear Experiment (nucl-ex)010306 general physicsSpectroscopyNuclear ExperimentNuclear ExperimentPhysics010308 nuclear & particles physicsIsland of inversionIsotonePhysicsStarke Wechselwirkung und exotische Kerne – Abteilung BlaumFísicalcsh:QC1-999Excited stateQuadrupoleAtomic physicsNucleonGround statelcsh:PhysicsRadioactive beams
researchProduct

The COMPASS Setup for Physics with Hadron Beams

2015

The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successful…

Particle physicsCalorimetry; Data acquisition and reconstruction; Fixed target experiment for hadron spectroscopy; Front-end electronics; Micro Pattern detectors and Drift chambers; Monte-Carlo simulation; RICH; Instrumentation; Nuclear and High Energy PhysicsNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsHadronFOS: Physical sciencesMonte-Carlo simulation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Calorimetryacquisition and reconstruction01 natural sciences7. Clean energyMicro Pattern detectors and Drift chambersHigh Energy Physics - ExperimentNuclear physicsMomentumHigh Energy Physics - Experiment (hep-ex)CompassHadron spectroscopy0103 physical sciencesDetectors and Experimental Techniques010306 general physicsRICHInstrumentationFixed target experiment for hadron spectroscopyPhysicsDataLarge Hadron Collider010308 nuclear & particles physicsMicroMegas detectorFront-end electronicsInstrumentation and Detectors (physics.ins-det)Micro Pattern detectorsand Drift chambersData acquisition and reconstructionGas electron multiplierPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentParticle Physics - ExperimentBeam (structure)Front-end electronicMicro Pattern detectors and Drift chamber
researchProduct

The COMPASS experiment at CERN

2007

The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both…

Nuclear and High Energy Physicsstraw tube detectorPhysics::Instrumentation and DetectorsProject commissioningFOS: Physical sciencesfixed-target experimentRICH detectorhadron structureHigh Energy Physics - ExperimenttargetMWPCNuclear physicsHigh Energy Physics - Experiment (hep-ex)CompassHadron spectroscopyCOMPASS experimentscintillating fibre detectorNuclear Experimentsilicon microstrip detectorsInstrumentationSilicon microstrip detectorsPhysicsLarge Hadron ColliderStructure functionMicroMegas detectorfront-end electronicsDAQmicromegas detectordrift chamberPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentpolarisedGEM detectorcalorimetryParticle Physics - Experimentpolarised DISNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Bulk micromegas detectors for large TPC applications

2007

A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact and robust low mass detectors. The capability to pave a large surface with a simple mounting solution and small dead space between modules is of particular interest for these applications. We have buil t several large bulk Micromegas detectors (27x26 cm 2 ) and we have tested them in the former HARP field cage setup wit h a magnetic field. Cosmic ray data have been acquired in a variet y of experimental conditions. Good detector performances and space point resolution have been achi…

Nuclear and High Energy PhysicsField (physics)Physics::Instrumentation and DetectorsCosmic rayddc:500.27. Clean energy01 natural sciencesNuclear physicsOptics0103 physical sciencesPoint (geometry)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physics29.40.Cs; 29.40.GxInstrumentationHARPPhysics010308 nuclear & particles physicsbusiness.industryDetectorFísicaMicroMegas detectorMagnetic fieldTPCbusinessMicromegas
researchProduct