0000000000501426
AUTHOR
Iheb Bouzid
Enhanced remedial reagents delivery in unsaturated anisotropic soils using surfactant foam
Abstract Homogeneous delivery of solution of oxidant in unsaturated soils is limited by soil anisotropy and gravity. An innovative injection strategy using foam was developed to improve in situ delivery. Primary foam injection before oxidant solution enhanced both the lateral and uniform delivery of reactant in isotropic and anisotropic (permeability, contamination) soils. The oxidant spread isotropically through the foam water network. This sequential injection heavily improved the delivery radius of influence (ROI), while limiting contact between surfactant and solution of oxidant in order to preserve the selective oxidation of petroleum hydrocarbons contaminant (TPH). Prior foam injectio…
Compatibility of surfactants with activated-persulfate for the selective oxidation of PAH in groundwater remediation
Abstract Surfactants foam technology can improve the in situ remediation of hydrophobic organic contaminants by enhancing their solubility and the delivery of remediation chemicals. However, the presence of surfactants may impair the effectiveness of the selective oxidation of those contaminants. To tackle the issue, kinetics and selectivity of phenanthrene (PHE) oxidation in aqueous suspensions and its affecting factors including surfactant concentration (CS) and nature, temperature and persulfate (PS) concentration were studied. Significant differences in selectivity were observed between surfactants, reflecting Coulomb interactions with the anionic oxidizers. Lauryl Betaine (LB) stood ou…
Comparative assessment of a foam-based oxidative treatment of hydrocarbon-contaminated unsaturated and anisotropic soils.
Abstract In situ delivery of liquid reagents in vadose zone is limited by soil anisotropy and gravity. The enhanced delivery of persulfate (PS) as oxidant, using a new foam-based method (F-PS) was compared at bench-scale to traditional water-based (W-PS) and surfactant solution-based (S-PS) deliveries. The goal was to distribute PS uniformly in coal tar-contaminated unsaturated and anisotropic soils, both in terms of permeability and contamination. Water was the less efficiently delivered fluid because of the hydrophobicity of the contaminated soils. Surfactant enhanced PS-distribution into contaminated zones by reducing interfacial tension and inverting soil wettability. Regardless of coal…
Comparative assessment of a foam-based method for ISCO of coal tar contaminated unsaturated soils
Abstract In situ delivery of liquid reagents in vadose zone is limited by gravity and soil anisotropy. A new foam-based delivery method of persulfate (PS) solutions in unsaturated soils was previously shown to overcome these limitations. The goal of this paper is to demonstrate the efficiency of this method regarding contaminant removal. Hence, the comparative oxidation of 200 mg.kg−1 coal tar artificially contaminated soils with thermally activated PS was carried out after PS-delivery using foam, surfactant solution and pure water. The foam-based method was compared in unfavorable conditions to the reference methods. Especially, in the latter, soil and oxidant solutions were thoroughly mix…
A new foam-based method for the (bio)degradation of hydrocarbons in contaminated vadose zone
International audience; An innovative foam-based method for Fenton reagents (FR) and bacteria delivery was assessed for the in situ remediation of a petroleum hydrocarbon-contaminated unsaturated zone. The surfactant foam was first injected, then reagent solutions were delivered and propagated through the network of foam lamellae with a piston-like effect. Bench-scale experiments demonstrated the feasibility of the various treatments with hydrocarbon (HC) removal efficiencies as high as 96 %. Compared to the direct injection of FR solutions, the foam-based method led to larger radii of influence and more isotropic reagents delivery, whereas it did not show any detrimental effect regarding H…
Controlled treatment of a high velocity anisotropic aquifer model contaminated by hexachlorocyclohexanes
International audience; Xanthan gels were assessed to control the reductive dechlorination of hexachlorocyclohexanes (HCHs) and trichlorobenzenes (TCBs) in a strong permeability contrast and high velocity sedimentary aquifer. An alkaline degradation was selected because of the low cost of NaOH and Ca(OH)2. The rheology of alkaline xanthan gels and their ability to deliver alkalinity homogeneously, while maintaining the latter, were studied. Whereas the xanthan gels behaved like non-Newtonian shear-thinning fluids, alkalinity and Ca(OH)2 microparticles had detrimental effects, yet, the latter decreased with the shear-rate. Breakthrough curves for the NaOH and Ca(OH)2 in xanthan solutions, ca…