0000000000503198

AUTHOR

C. Petta

showing 74 related works from this author

The data acquisition system for the ANTARES neutrino telescope

2006

The ANTARES neutrino telescope is being constructed in the Mediterranean Sea. It consists of a large three-dimensional array of photo-multiplier tubes. The data acquisition system of the detector takes care of the digitisation of the photo-multiplier tube signals, data transport, data filtering, and data storage. The detector is operated using a control program interfaced with all elements. The design and the implementation of the data acquisition system are described.

Nuclear and High Energy Physics[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and DetectorsData managementAstrophysics::High Energy Astrophysical PhenomenaNeutrino telescopeComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONFOS: Physical sciencesAstrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Data filteringData acquisition0103 physical sciences14. Life underwaterElectronics010306 general physicsInstrumentationdata acquisition system; neutrino telescopeRemote sensingAstroparticle physicsPhysicsneutrino telescope data acquisition system[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsbusiness.industryDetectorAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyneutrino telescopedata acquisition systemComputer data storageFísica nuclearbusiness
researchProduct

Measurement of charged jet production cross sections and nuclear modification in p–Pb collisions at sNN=5.02 TeV

2015

Charged jet production cross sections in p–Pb collisions at √sNN = 5.02 TeV measured with the ALICE detector at the LHC are presented. Using the anti-kT algorithm, jets have been reconstructed in the central rapidity region from charged particles with resolution parameters R = 0.2 and R = 0.4. The reconstructed jets have been corrected for detector effects and the underlying event background. To calculate the nuclear modification factor, RpPb, of charged jets in p–Pb collisions, a pp reference was constructed by scaling previously measured charged jet spectra at √s = 7 TeV. In the transverse momentum range 20 ≤ pT, ch jet ≤ 120 GeV/c, RpPb is found to be consistent with unity, indicating th…

PhysicsNuclear and High Energy PhysicsJet (fluid)Particle physicsRange (particle radiation)Large Hadron ColliderAstrophysics::High Energy Astrophysical PhenomenaNuclear matterSpectral lineCharged particleNuclear physicsHigh Energy Physics::ExperimentRapidityNuclear ExperimentScalingPhysics Letters B
researchProduct

Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC

2014

In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correl…

kinetic freezout heavy-ion experiments particle cummulantsMULTIPLICITY DEPENDENCEfreeze-out radius; three-pion cumulants; pp; p–Pb and Pb–Pb collisionsPb-Pb and p-Pb collisions at the LHCpp01 natural sciencesHigh Energy Physics - Experimentlaw.inventionColor-glass condensateHigh Energy Physics - Experiment (hep-ex)ALICElawheavy-ion experiments[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PbPbNuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]kinetic freezoutNuclear ExperimentNuclear ExperimentBosonPhysicsLarge Hadron ColliderPhysicsfreeze-out radiusHEAVY-ION GENERATORlcsh:QC1-999:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]Three-pion cumulant correlations3. Good healthPRIRODNE ZNANOSTI. Fizika.BOSE-EINSTEIN CORRELATIONSParticle Physics - ExperimentNuclear and High Energy PhysicsParticle physics[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]QC1-999particle cummulantsVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciencesALICE; pp; pPb; PbPb; Bose-Einstein; correlation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Kinetic energyp-pNuclear physicsBOSE-EINSTEIN CORRELATIONS; RANGE ANGULAR-CORRELATIONS; HEAVY-ION GENERATOR; MULTIPLICITY DEPENDENCEPion0103 physical sciencesNuclear Physics - Experimentddc:530Multiplicity (chemistry)010306 general physicsta114p–Pb and Pb–Pb collisionsVDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]ALICE experimentBose–Einstein correlationsBose-EinsteinNATURAL SCIENCES. Physics.correlationpPbthree-pion cumulantslcsh:PhysicsBose–Einstein condensateRANGE ANGULAR-CORRELATIONSPhysics Letters B
researchProduct

D -Meson Azimuthal Anisotropy in Midcentral Pb-Pb Collisions at sNN=5.02  TeV

2018

A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung fur Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep), and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil; Ministry of Science and Technology of China (MSTC), National Natural Science Foundation of …

Particle physicsHigher education010308 nuclear & particles physicsbusiness.industry4. EducationAtomic energyIndustrial researchGeneral Physics and AstronomyLibrary science01 natural scienceslanguage.human_languageBildungResearch centrePolitical science0103 physical scienceslanguageSlovak010306 general physicsChinabusinessResearch centerPhysical Review Letters
researchProduct

Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC

2018

We report the measured transverse momentum ($p_{\rm T}$) spectra of primary charged particles from pp, p-Pb and Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$ TeV in the kinematic range of $0.15<p_{\rm T}<50$ GeV/$c$ and $|\eta|< 0.8$. A significant improvement of systematic uncertainties motivated the reanalysis of data in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV, as well as in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, which is also presented. Spectra from Pb-Pb collisions are presented in nine centrality intervals and are compared to a reference spectrum from pp collisions scaled by the number of binary nucleon-nucleon collisions. For cent…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]heavy ion: scatteringHadronmomentum [up]binaryMULTIPLICITY DEPENDENCEPartonheavy ion: scattering ; transverse momentum: momentum spectrum ; quantum chromodynamics: matter ; parton: energy loss ; momentum: high ; up: momentum ; pp: scattering ; nucleus ; charged particle ; suppression ; energy dependence ; impact parameter ; transport theory ; nucleon nucleon ; CERN LHC Coll ; kinematics ; binarymomentum spectrum [transverse momentum]hiukkasfysiikkaKAONnucl-ex01 natural sciences7. Clean energy2760 GeV-cms/nucleonHigh Energy Physics - Experimenttransverse momentum: momentum spectrumHeavy Ion Experiments; Heavy-ion collision; Nuclear and high energy physicsHigh Energy Physics - Experiment (hep-ex)quark gluon plasma Heavy Ion Experiments Heavy-ion collisionnucleon nucleonHeavy-ion collisionhigh [momentum]PIONscattering [p p]transport theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)impact parameterNuclear ExperimentNuclear ExperimentQCD matterparticle production and suppressionPhysicsPhysicsHADRONSheavy ion experiments heavy ion collision particle production and suppressionHeavy Ion Experiments; Heavy-ion collisionVDP::Kjerne- og elementærpartikkelfysikk: 431suppressionCENTRALITY DEPENDENCEcharged particleCharged particleMULTIPLICITY DEPENDENCE; CENTRALITY DEPENDENCE; HADRONS; SUPPRESSION; MODEL; KAON; PIONquark gluon plasma:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]:Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollVDP::Nuclear and elementary particle physics: 431kinematicsHeavy Ion ExperimentImpact parameterParticle Physics - ExperimentHeavy Ion Experiments Heavy-ion collision Nuclear and High Energy Physics.Nuclear and High Energy Physicsp p: scatteringnucleon nucleon: scatteringenergy loss [parton]FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencesenergy dependenceNuclear physicsPionHeavy Ion Experiments[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [heavy ion]0103 physical sciencesmatter [quantum chromodynamics]lcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530Nuclear Physics - Experiment5020 GeV-cms/nucleonup: momentum010306 general physicsp nucleus: scatteringquantum chromodynamics: matterta114010308 nuclear & particles physicshep-exnucleus:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Nuclear and high energy physicsheavy ion collisionMODEL* Automatic Keywords *13. Climate actionmomentum: highQuark–gluon plasmalcsh:QC770-798High Energy Physics::Experimentparton: energy lossEnergy (signal processing)experimental results
researchProduct

Volume IV The DUNE far detector single-phase technology

2020

This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.

Technology530 Physicsmedia_common.quotation_subjectNeutrino oscillations liquid Argon TPC DUNE technical design report single phase LArTPCElectronsFREE-ELECTRONS01 natural sciences7. Clean energy09 Engineering030218 nuclear medicine & medical imagingStandard Model03 medical and health sciencesneutrino0302 clinical medicineLIQUID ARGON0103 physical sciencesGrand Unified TheoryHigh Energy PhysicsAerospace engineeringInstrumentationInstruments & InstrumentationMathematical Physicsmedia_commonPhysicsScience & Technology02 Physical Sciences010308 nuclear & particles physicsbusiness.industryDetectorLıquıd ArgonfreeNuclear & Particles PhysicsSymmetry (physics)UniverseLong baseline neutrino experiment CP violationAntimatterNeutrinobusinessEvent (particle physics)
researchProduct

First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

2020

The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…

TechnologyHIGH-ENERGYPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsfar detectorbeam transportNoble liquid detectors (scintillation ionization double-phase)Cms Experıment01 natural sciences7. Clean energy09 EngineeringParticle identificationHigh Energy Physics - Experiment030218 nuclear medicine & medical imagingHigh Energy Physics - Experiment (hep-ex)0302 clinical medicineNoble liquid detectors (scintillationDetectors and Experimental TechniquesInstrumentationInstruments & Instrumentationphysics.ins-dettime resolutionMathematical PhysicsPhysics02 Physical SciencesTime projection chamberLarge Hadron ColliderDetectorInstrumentation and Detectors (physics.ins-det)double-phase)Nuclear & Particles PhysicsLIGHTNeutrinoParticle Physics - ExperimentperformanceNoble liquid detectors(scintillation ionization double-phase)noiseCERN LabLarge detector systems for particle and astroparticle physics Noble liquid detectors (scintillation ionization double-phase) Time projection Chambers (TPC)530 Physicsenergy lossTime projection chambersFOS: Physical sciencesParticle detectorNuclear physics03 medical and health sciencesneutrino: deep underground detector0103 physical sciencesionizationDeep Underground Neutrino ExperimentHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]signal processingactivity reportScience & Technology010308 nuclear & particles physicshep-exLarge detector systems for particle and astroparticle physicsTime projection Chambers (TPC)530 Physiksensitivitycalibrationtime projection chamber: liquid argonExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicsingle-phase)Large detector systems for particle and astroparticle physics; Noble liquid detectors (scintillation ionization double-phase); Time projection Chambers (TPC)High Energy Physics::Experimentphoton: detectorparticle identificationcharged particle: irradiationBeam (structure)
researchProduct

Dielectron and heavy-quark production in inelastic and high-multiplicity proton–proton collisions at s=13TeV

2018

The measurement of dielectron production is presented as a function of invariant mass and transverse momentum (pT) at midrapidity (|ye|&lt;0.8) in proton–proton (pp) collisions at a centre-of-mass energy of s=13 TeV. The contributions from light-hadron decays are calculated from their measured cross sections in pp collisions at s=7 TeV or 13 TeV. The remaining continuum stems from correlated semileptonic decays of heavy-flavour hadrons. Fitting the data with templates from two different MC event generators, PYTHIA and POWHEG, the charm and beauty cross sections at midrapidity are extracted for the first time at this collision energy: dσcc¯/dy|y=0=974±138(stat.)±140(syst.)±214(BR)μb and dσbb…

Quantum chromodynamicsQuarkPhysicsNuclear and High Energy PhysicsPhotonProton010308 nuclear & particles physicsHadronMultiplicity (mathematics)01 natural sciencesNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentInvariant massCharm (quantum number)Nuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Charged jet cross section and fragmentation in proton-proton collisions at √s = 7 TeV

2019

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. We report the differential charged jet cross section and jet fragmentation distributions measured with the ALICE detector in proton-proton collisions at a center-of-mass energy √s=7  TeV. Jets with pseudorapidity |η|40  GeV/c, the pythia calculations also agree with the measured charged jet cross section. pythia6 simulations describe the fragmentation distributions to 15%. Larger discrepancies are observed for pythia8. SCOAP

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Physics and Astronomy (miscellaneous)fragmentation [jet]Astrophysics::High Energy Astrophysical Phenomenameasured [cross section]transverse momentumhiukkasfysiikka01 natural sciencesscattering [pp]Nuclear physicsALICEFragmentation (mass spectrometry)0103 physical sciencesjet fragmentation010306 general physicsNuclear ExperimentPhysicsQuantum chromodynamicsPP COLLISIONSta114010308 nuclear & particles physicsPB COLLISIONS:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]TRANSVERSE-MOMENTUMVDP::Kjerne- og elementærpartikkelfysikk: 431resolution16. Peace & justicecharged particlejet cross sectionCharged particleNATURAL SCIENCES. Physics.ddc::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]PRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]pp: scattering ; jet: fragmentation ; cross section: measured ; transverse momentum ; charged particle ; resolution ; PYTHIA ; ALICEVDP::Nuclear and elementary particle physics: 431PseudorapidityTransverse momentumPYTHIAHigh Energy Physics::Experimentproton-proton collisionsTRANSVERSE-MOMENTUM; PP COLLISIONS; PB COLLISIONS; PARTICLEPARTICLEPhysical Review D
researchProduct

Neutrino interaction classification with a convolutional neural network in the DUNE far detector

2020

The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…

Neutrino Oscillations. Neutrino detectors.Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsfar detector01 natural sciencesPhysics Particles & FieldsHigh Energy Physics - Experimentcharged currentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics ExperimentsMuon neutrinoneutrino/e: particle identificationNeutrino detectorsDetectors and Experimental Techniquesphysics.ins-detCharged currentneutrino: interactionInformáticaPhysicsTelecomunicacionesNeutrino oscillationsPhysicsNeutrino interactions neural network DUNE Deep Underground Neutrino ExperimentInstrumentation and Detectors (physics.ins-det)Experiment (hep-ex)Neutrino detectorPhysical SciencesCP violationNeutrinoParticle Physics - ExperimentParticle physicsdata analysis method530 Physicsneural networkAstrophysics::High Energy Astrophysical PhenomenaCONSERVATIONFOS: Physical sciencesAstronomy & AstrophysicsDeep Learningneutrino: deep underground detectorneutrino physics0103 physical sciencesNeutrino Oscillations. Neutrino detectorsObject DetectionNeutrinoCP: violationDeep Underground Neutrino ExperimentHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinos010306 general physicsNeutrino oscillationneutrino/mu: particle identificationIOUScience & TechnologyDUNENeutrino interactions010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyFísicaNeutrino InteractionDetector530 PhysiksensitivityefficiencyHigh Energy Physics::ExperimentElectron neutrino
researchProduct

Elliptic flow of muons from heavy-flavour hadron decays at forward rapidity in Pb–Pb collisions at sNN=2.76 TeV

2016

The elliptic flow, $v_{2}$, of muons from heavy-flavour hadron decays at forward rapidity ($2.5 < y < 4$) is measured in Pb--Pb collisions at $\sqrt{s_{\rm NN}}$~=~2.76 TeV with the ALICE detector at the LHC. The scalar product, two- and four-particle $Q$ cumulants and Lee-Yang zeros methods are used. The dependence of the $v_2$ of muons from heavy-flavour hadron decays on the collision centrality, in the range 0--40\%, and on transverse momentum, $p_{\rm T}$, is studied in the interval $3 < p_{\rm T} < 10$~GeV/$c$. A positive $v_2$ is observed with the scalar product and two-particle $Q$ cumulants in semi-central collisions (10--20\% and 20--40\% centrality classes) for the $p_{\rm T}$ int…

PhysicsQuarkNuclear and High Energy PhysicsParticle physicsMuon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyElliptic flowHadron01 natural sciencesHadronizationNuclear physicsPion0103 physical sciencesHigh Energy Physics::ExperimentRapidityImpact parameterNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

The ANTARES Optical Beacon System

2007

ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirabl…

Nuclear and High Energy PhysicsPhotomultiplierPhysics::Instrumentation and Detectors[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesneutrino telescope; optical beacon; time calibrationAstrophysics01 natural scienceslaw.inventionTelescope[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Opticslaw0103 physical sciencesCalibrationtime calibrationAngular resolution14. Life underwateroptical beacon010306 general physicsInstrumentationCherenkov radiationPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]neutrino telescope time calibration optical beacon010308 nuclear & particles physicsbusiness.industryDetectorAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for Astrophysicsneutrino telescopeSITEAstronomyBeaconLIGHTFísica nuclearNeutrinobusiness
researchProduct

The ALICE Transition Radiation Detector: Construction, operation, and performance

2018

The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/$c$ in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both …

Physics - Instrumentation and Detectors:Kjerne- og elementærpartikkelfysikk: 431 [VDP]TRPhysics::Instrumentation and DetectorsCOLLIDING BEAM EXPERIMENT; ELECTRON IDENTIFICATION; DRIFT CHAMBERS; TRD PROTOTYPES; ENERGY-LOSS; GEV/C; COLLISIONS; PIONSparticle identification [electron]Ionisation energy loTracking (particle physics)Transition radiation detector ; Multi-wire proportional drift chamber ; Fibre/foam sandwich radiator ; Xenon-based gas mixture ; Tracking ; Ionisation energy loss ; dE/dx ; TR ; Electron-pion identification ; Neural network ; Trigger01 natural sciencesParticle identificationdesign [detector]ALICEDetectors and Experimental Techniquesmomentum resolutionNuclear Experimentphysics.ins-detInstrumentationPhysicsPROTOTYPESLarge Hadron Collidertransition radiation detector; multi-wire proportional drift chamber;; fibre/foam sandwich radiator; Xenon-based gas mixture; tracking;; Ionisation energy loss; dE/dx; TR; electron-pion identification; Neural; network; trigger; COLLIDING BEAM EXPERIMENT; ELECTRON IDENTIFICATION; DRIFT CHAMBERS; TRD; PROTOTYPES; ENERGY-LOSS; GEV/C; COLLISIONS; PIONStrack data analysisTrackingPIONSDetectorVDP::Kjerne- og elementærpartikkelfysikk: 431Instrumentation and Detectors (physics.ins-det)trackingtransition radiation detector:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]ddc:PRIRODNE ZNANOSTI. Fizika.Xenon-based gas mixtureTransition radiation detector:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431GEV/Cmulti-wire proportional drift chamberperformanceParticle physicsNuclear and High Energy PhysicsCOLLISIONSelectron-pion identificationneural networkInstrumentationFOS: Physical sciencesTransition radiation detector; Multi-wire proportional drift chamber; Fibre/foam sandwich radiator; Xenon-based gas mixture; Tracking; Ionisation energy loss; dE/dx; TR; Electron-pion identification; Neural network; Trigger114 Physical sciencesMomentumNuclear physicsionisation energy loss0103 physical sciencesdE/dxDRIFT CHAMBERSdE/dx Electron-pion identification Fibre/foam sandwich radiator Ionisation energy loss Multi-wire proportional drift chamber Neural network TR Tracking Transition radiation detector Trigger Xenon-based gas mixture Nuclear and High Energy Physics Instrumentation.ddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]seuranta010306 general physicsdetector: designNuclear and High Energy PhysicNeuralCOLLIDING BEAM EXPERIMENTTRD PROTOTYPESelectron: particle identificationta114010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]fibre/foam sandwich radiatortriggercalibrationNATURAL SCIENCES. Physics.Neural networkdE/dx; Electron-pion identification; Fibre/foam sandwich radiator; Ionisation energy loss; Multi-wire proportional drift chamber; Neural network; TR; Tracking; Transition radiation detector; Trigger; Xenon-based gas mixtureTriggerdE/dx; Electron-pion identification; Fibre/foam sandwich radiator; Ionisation energy loss; Multi-wire proportional drift chamber; Neural network; TR; Tracking; Transition radiation detector; Trigger; Xenon-based gas mixture; Nuclear and High Energy Physics; InstrumentationnetworkELECTRON IDENTIFICATIONTRDHigh Energy Physics::ExperimentALICE (propellant)ENERGY-LOSSNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb–Pb collisions at sNN=2.76 TeV

2014

The inclusive J/.nuclear modification factor (R-AA) in Pb-Pb collisions at root(NN)-N-S = 2.76TeVhas been measured by ALICE as a function of centrality in the e+ e-decay channel at mid-rapidity (| y| < 0.8) and as a function of centrality, transverse momentum and rapidity in the + -decay channel at forward-rapidity (2.5 < y < 4). The J/.yields measured in Pb-Pb are suppressed compared to those in ppcollisions scaled by the number of binary collisions. The RAAintegrated over a centrality range corresponding to 90% of the inelastic Pb-Pb cross section is 0.72 - 0.06(stat.) - 0.10(syst.) at mid-rapidity and 0.58 - 0.01(stat.) - 0.09(syst.) at forward-rapidity. At low transverse momentum, signi…

Nuclear physicsPhysicsNuclear and High Energy PhysicsParticle physicsTransverse momentumModification factorRapidityCentralityLower energyCharm quarkPhysics Letters B
researchProduct

KS0andΛProduction in Pb-Pb Collisions atsNN=2.76  TeV

2013

The ALICE measurement of K^0_S and {\Lambda} production at mid-rapidity in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV is presented. The transverse momentum (pT) spectra are shown for several collision centrality intervals and in the pT range from 0.4 GeV/c (0.6 GeV/c for {\Lambda}) to 12 GeV/c. The pT dependence of the {\Lambda}/K^0_S ratios exhibits maxima in the vicinity of 3 GeV/c, and the positions of the maxima shift towards higher pT with increasing collision centrality. The magnitude of these maxima increases by almost a factor of three between most peripheral and most central Pb-Pb collisions. This baryon excess at intermediate pT is not observed in pp interactions at sqrt(s) = 0.9 Te…

PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsHadronGeneral Physics and AstronomyLambda01 natural sciencesSpectral lineHadronizationNuclear physicsBaryon0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsMaximaPhysical Review Letters
researchProduct

Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC

2017

The measurement of azimuthal correlations of charged particles is presented for Pb-Pb collisions at $\sqrt{s_{\rm NN}}=$ 2.76 TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}=$ 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. These correlations are measured for the second, third and fourth order flow vector in the pseudorapidity region $|��|&lt;0.8$ as a function of centrality and transverse momentum $p_{\rm T}$ using two observables, to search for evidence of $p_{\rm T}$-dependent flow vector fluctuations. For Pb-Pb collisions at 2.76 TeV, the measurements indicate that $p_{\rm T}$-dependent fluctuations are only present for the second order flow vector. Similar results hav…

HEAVY-ION COLLISIONSnucl-extransverse momentum dependenceCOLLABORATIONangular correlation [charged particle]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICEmodel: hydrodynamicstransport theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ExperimentNuclear ExperimentMonte CarloHeavy Ion Experiments; RELATIVISTIC NUCLEAR COLLISIONS; HEAVY-ION COLLISIONS; QUARK-GLUON; PLASMA; COLLECTIVE FLOW; COLLABORATIONPLASMAfluctuation [geometry]flow: anisotropygeometry: fluctuationQUARK-GLUONCERN LHC CollHeavy Ion Experiments; Nuclear and High Energy PhysicsflowRELATIVISTIC NUCLEAR COLLISIONSHeavy Ion ExperimentQuark-Gluon PlasmaParticle Physics - Experiment2760 GeV/nucleon5020 GeV/nucleonNuclear and High Energy PhysicsCERN LabCOLLECTIVE FLOWFOS: Physical sciencestransverse momentum[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]vector [fluctuation]Heavy Ion Experimentsscattering [heavy ion][ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]factorizationlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530hydrodynamics [model]Nuclear Physics - Experimentnumerical calculationsinitial stateleadHeavy Ion Experiments Nuclear and High Energy Physics.hep-exboundary conditionrapiditycorrelationviscositylcsh:QC770-798High Energy Physics::Experimentp nucleusentropy: densitycharged particle: angular correlationexperimental results
researchProduct

Flow dominance and factorization of transverse momentum correlations in Pb-Pb collisions at the LHC

2017

Physical review letters 118(16), 162302 (2017). doi:10.1103/PhysRevLett.118.162302

heavy ion: scattering:Kjerne- og elementærpartikkelfysikk: 431 [VDP]transverse momentum [correlation function]correlation [momentum]550Pb-PbPb-Pb collisionsGeneral Physics and Astronomyhiukkasfysiikkanucl-exPP01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICEDEPENDENCEddc:550Nuclear Experiment (nucl-ex)ROOT-S(NN)=2.76 TEVNuclear ExperimentPERSPECTIVENuclear ExperimentPhysics and Astronomy (all); ALICE; LHCPhysicscorrelation function: transverse momentumPhysicsflow ; transverse ; momentum ; Pb-Pbtransverse momentum: correlationtwo-particleHanbury-Brown-Twiss effect:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]PRIRODNE ZNANOSTI. Fizika.transverseTransverse planeCorrelation function (statistical mechanics)CERN LHC Coll:Nuclear and elementary particle physics: 431 [VDP]flowPseudorapidityLHCParticle Physics - ExperimentdeconfinementParticle physicscollectiveVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciencesmomentumtriangulationPhysics and Astronomy(all)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencesBethe ansatzMomentumNuclear physicsCENTRALITYPhysics and Astronomy (all)statistical analysisFactorizationscattering [heavy ion]Relativistic heavy-ion collisions0103 physical sciencesALICE / ALICE2760 GeV-cmsNuclear Physics - ExperimentRapiditystructurenumerical calculations010306 general physicsNuclear Physicstwo-particle transverse momentum differential correlation functionAnsatzleadDEPENDENCE PERSPECTIVE CENTRALITY PP.ta114VDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431hep-ex010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]momentum: correlationBethe ansatzROOT-S(NN)=2.76 TEV; DEPENDENCE; PERSPECTIVE; PPNATURAL SCIENCES. Physics.rapiditypile-uptransverse momentum: factorizationfactorization [transverse momentum]correlation [transverse momentum]experimental results
researchProduct

First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope

2006

In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system, as well as the calibration devices of the detector. The in-situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. T…

Photomultiplierneutrino astronomy; photon detection; underwater detectorPositioning systemInstrumentationAstrophysics::High Energy Astrophysical PhenomenaNeutrino astronomy Underwater detector Photon detectionFOS: Physical sciencesAstrophysics01 natural sciencesneutrino astronomy[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciencesCalibrationAngular resolution010306 general physicsRemote sensingAstroparticle physicsPhysicsunderwater detector[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsDetectorAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsAstronomySITEAstronomy and AstrophysicsLIGHTPHOTON DETECTIONNEUTRINO ASTRONOMYFísica nuclearUNDERWATER DETECTORNeutrino astronomy
researchProduct

Study of Large Hemispherical Photomultiplier Tubes for the ANTARES Neutrino Telescope

2005

The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a 3 dimensional matrix of 900 large area photomultiplier tubes housed in pressure resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the PMT chosen for ANTARES.

Nuclear and High Energy PhysicsPhotomultiplierPhysics - Instrumentation and DetectorsNeutrino detectionNeutrino telescopeFOS: Physical sciences01 natural scienceslarge area photosensor hemispherical photomultiplier neutrino detectionNuclear physicsOpticsIntensive Phase0103 physical sciences14. Life underwater[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentationAstroparticle physicsPhysics010308 nuclear & particles physicsbusiness.industryHemispherical photomultiplierInstrumentation and Detectors (physics.ins-det)Large area photosensorGlass spheresNeutrino detector95.55.Vj; 85.60.HaFísica nuclearbusinesshemispherical photomultiplier; large area photosensor; neutrino detection
researchProduct

Harmonic decomposition of two particle angular correlations in Pb–Pb collisions at sNN=2.76 TeV

2012

Angular correlations between unidentified charged trigger (t) and associated (a) particles are measured by the ALICE experiment in Pb-Pb collisions at root s(NN) = 2.76 TeV for transverse momenta 0.25 p(T)(a). The shapes of the pair correlation distributions are studied in a variety of collision centrality classes between 0 and 50% of the total hadronic cross section for particles in the pseudorapidity interval |eta| 0.8, and are referred to as "long-range correlations". Fourier components V-n Delta equivalent to are extracted from the long-range azimuthal correlation functions. If particle pairs are correlated to one another through their individual correlation to a common symmetry plane, …

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsHadronElementary particle01 natural sciencesDecompositionDistribution (mathematics)Correlation functionPseudorapidity0103 physical sciencesHarmonicParticleAtomic physicsNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Pseudorapidity dependence of the anisotropic flow of charged particles in Pb–Pb collisions at sNN=2.76 TeV

2016

We present measurements of the elliptic ($\mathrm{v}_2$), triangular ($\mathrm{v}_3$) and quadrangular ($\mathrm{v}_4$) anisotropic azimuthal flow over a wide range of pseudorapidities ($-3.5< \eta < 5$). The measurements are performed with Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV using the ALICE detector at the Large Hadron Collider (LHC). The flow harmonics are obtained using two- and four-particle correlations from nine different centrality intervals covering central to peripheral collisions. We find that the shape of $\mathrm{v}_n(\eta)$ is largely independent of centrality for the flow harmonics $n=2-4$, however the higher harmonics fall off more steeply with increasing $|…

PhysicsNuclear and High Energy PhysicsLarge Hadron Collider010308 nuclear & particles physicsElliptic flow01 natural sciencesCharged particleNuclear physicsPseudorapidityHarmonics0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentRapidityNuclear Experiment010306 general physicsScalingPhysics Letters B
researchProduct

Inclusive quarkonium production at forward rapidity in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usep…

2016

We report on the inclusive production cross sections of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{J}/\psi }$$\end{document}J/ψ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi (\mathrm{2S})}$$\end{document}ψ(2S), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepac…

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

ϕ-Meson production at forward rapidity in p–Pb collisions at sNN=5.02 TeV and in pp collisions at s=2.76 TeV

2017

The first study of $\phi$-meson production in p–Pb collisions at forward and backward rapidity, at a nucleon– nucleon centre-of-mass energy $\sqrt{S_{NN}}$= 5.02 TeV, has been performed with the ALICE apparatus at the LHC. The $\phi$-mesons have been identified in the dimuon decay channel in the transverse momentum ($p_T$) range 1 < $p_T$ < 7 GeV/c, both in the p-going (2.03 < y < 3.53) and the Pb-going (−4.46 < y < −2.96) directions — where $y$ stands for the rapidity in the nucleon–nucleon centre-of-mass — the integrated luminosity amounting to 5.01 ± 0.19 nb$^{−1}$ and 5.81 ± 0.20 nb$^{−1}$ , respectively, for the two data samples. Differential cross sections as a function of transverse …

PhysicsNuclear and High Energy PhysicsParticle physicsMeson010308 nuclear & particles physicsBranching fractionHadronStrangeness01 natural sciencesNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentProduction (computer science)RapidityAbsorption (logic)Nuclear Experiment010306 general physicsNucleonPhysics Letters B
researchProduct

Anisotropic Flow of Charged Particles in Pb-Pb Collisions atsNN=5.02  TeV

2016

We report the first results of elliptic (v2), triangular (v3), and quadrangular (v4) flow of charged particles in Pb-Pb collisions at a center-of-mass energy per nucleon pair of √sNN=5.02  TeV with the ALICE detector at the CERN Large Hadron Collider. The measurements are performed in the central pseudorapidity region |η|<0.8 and for the transverse momentum range 0.2<pT<5  GeV/c. The anisotropic flow is measured using two-particle correlations with a pseudorapidity gap greater than one unit and with the multiparticle cumulant method. Compared to results from Pb-Pb collisions at √sNN=2.76  TeV, the anisotropic flow coefficients v2, v3, and v4 are found to increase by (3.0±0.6)%, (4.3±1.4)%, …

PhysicsRange (particle radiation)Large Hadron Collider010308 nuclear & particles physicsElliptic flowGeneral Physics and Astronomy01 natural sciences7. Clean energyCharged particleNuclear physicsPseudorapidity0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsNucleonAnisotropyPhysical Review Letters
researchProduct

Measuring KS0K± interactions using Pb–Pb collisions at sNN=2.76 TeV

2019

We present the first measurements of femtoscopic correlations between the KS0 and K± particles in pp collisions at s=7 TeV measured by the ALICE experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding solely via the a0(980) resonance. The extracted kaon source radius and correlation strength parameters for KS0K− are found to be equal within the experimental uncertainties to those for KS0K+ . Results of the present study are compared with those from identical-kaon femtoscopic studies also performed with pp collisions at s=7 TeV by ALICE and with a KS0K± measurement in Pb–Pb collisions at sNN=2.76 TeV. Combined with the Pb–Pb results, our pp a…

Quantum chromodynamicsPhysicsCouplingNuclear and High Energy PhysicsLarge Hadron Collider010308 nuclear & particles physicsRadius01 natural sciencesResonance (particle physics)Particle identificationNuclear physicsDiquarkHadron physics0103 physical sciencesStatistical analysisTetraquark010306 general physicsPhysics Letters B
researchProduct

Search for weakly decaying Λn‾ and ΛΛ exotic bound states in central Pb–Pb collisions at sNN=2.76 TeV

2016

We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible (Lambda n) over bar bound state. The search is performed with the ALICE detector in central (0-10%) Pb-Pb collisions at root S-NN = 2.76 TeV, by invariant mass analysis in the decay modes (Lambda n) over bar (d) over bar pi(+) and H-dibaryon -> Lambda p pi(-). No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound s…

PhysicsNuclear and High Energy PhysicsLarge Hadron Collider010308 nuclear & particles physicsBranching fractionNuclear TheoryBinding energyLambda01 natural sciencesParticle identificationNuclear physics0103 physical sciencesBound stateHigh Energy Physics::ExperimentInvariant massNuclear Experiment010306 general physicsHypertritonPhysics Letters B
researchProduct

Pseudorapidity and transverse-momentum distributions of charged particles in proton–proton collisions at s=13 TeV

2016

The pseudorapidity (η) and transverse-momentum (pT) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy s√ = 13 TeV. The pseudorapidity distribution in |η|< 1.8 is reported for inelastic events and for events with at least one charged particle in | η|< 1. The pseudorapidity density of charged particles produced in the pseudorapidity region |η|< 0.5 is 5.31 ± 0.18 and 6.46 ± 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15 < pT < 20 GeV/c and |η|< 0.8 for events with at least one charged particle in |η|< 1. The correlation between transverse momen…

PhysicsNuclear and High Energy PhysicsParticle physicsTime projection chamber010308 nuclear & particles physicsHadronPartonStrangeness01 natural sciences7. Clean energyCharged particleHadronizationNuclear physicsPseudorapidity0103 physical sciencesHigh Energy Physics::ExperimentMultiplicity (chemistry)Nuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Charged jet cross sections and properties in proton-proton collisions at $\sqrt{s}=7$ TeV

2015

The differential charged jet cross sections, jet fragmentation distributions, and jet shapes are measured in minimum bias proton-proton collisions at centre-of-mass energy $\sqrt{s}=7$ TeV using the ALICE detector at the LHC. Jets are reconstructed from charged particle momenta in the mid-rapidity region using the sequential recombination $k_{\rm T}$ and anti-$k_{\rm T}$ as well as the SISCone jet finding algorithms with several resolution parameters in the range $R=0.2$ to $0.6$. Differential jet production cross sections measured with the three jet finders are in agreement in the transverse momentum ($p_{\rm T}$) interval $20<p_{\rm T}^{\rm jet,ch}<100$ GeV/$c$. They are also consistent w…

shapes:Kjerne- og elementærpartikkelfysikk: 431 [VDP]parton distributionsMonte Carlo methodP(P)OVER-BAR COLLISIONSALICE Charged jet proton-proton 7 TeVATLAS DETECTOR01 natural sciencesSpectral lineHigh Energy Physics - Experimentdifferential charged jet cross sectionENERGYHigh Energy Physics - Experiment (hep-ex)ALICEFragmentation (mass spectrometry)Nuclear and High Energy Physics differential charged jet cross sectionfragmentation[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)ROOT-S(NN)=2.76 TEVNuclear ExperimentNuclear Experimentroot-s(nn)=2.76 tevatlas detectorPhysicsLarge Hadron Collidercross sectionPhysicsDetectorCharged particle3. Good health:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]charged jetsPRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]SHAPESTransverse momentumHADRON-COLLISIONSFRAGMENTATIONpp collisionsenergyParticle physicsNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaCharged jetVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencestransverse-momentumNuclear physicsMinimum bias(P)OVER-BAR-P COLLISIONS P(P)OVER-BAR COLLISIONS PP COLLISIONS PARTON DISTRIBUTIONS TRANSVERSE-MOMENTUM SHAPES ALGORITHM ENERGY0103 physical sciences7 TeVNuclear Physics - Experimentproton-protonALGORITHM010306 general physics(p)over-bar-p collisionsPP COLLISIONSta114(P)OVER-BAR-P COLLISIONSVDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]TRANSVERSE-MOMENTUMNATURAL SCIENCES. Physics.(p)over-bar-p collisions ; parton distributions ; transverse-momentum ; root-s(nn)=2.76 tev ; hadron-collisions ; atlas detector ; pp collisions ; fragmentation ; shapes ; energy ; charged jet ; cross section ; proton-proton ; 7 TeVhadron-collisionsPARTON DISTRIBUTIONSALICE; Charged jet; proton-proton; 7 TeVproton-proton collisionsHigh Energy Physics::Experimentcharged jet
researchProduct

Volume I. Introduction to DUNE

2020

Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008

detector: technologydeep underground detector [neutrino]530 PhysicsPhysics::Instrumentation and DetectorsData managementmedia_common.quotation_subjectfar detector610Long baseline neutrino experiment CP violation01 natural sciences030218 nuclear medicine & medical imagingNeutrino oscillations. Neutrino Detectors. CP violation. Matter stabilitydesign [detector]03 medical and health sciencesneutrinoneutrino: deep underground detector0302 clinical medicinenear detector0103 physical sciencesDeep Underground Neutrino Experimentddc:610Neutrino oscillationInstrumentationdetector: designMathematical Physicsactivity reportmedia_common010308 nuclear & particles physicsbusiness.industryNeutrino oscillations. Neutrino Detectors. CP violation. Matter stability.DetectorVolume (computing)Modular designtime projection chamber: liquid argonUniversetechnology [detector]liquid argon [time projection chamber]Systems engineeringHigh Energy Physics::ExperimentNeutrino oscillations DUNE technical design report executive summary detector technologiesdata managementNeutrinobusiness
researchProduct

Charged kaon femtoscopic correlations inppcollisions ats=7  TeV

2013

Correlations of two charged identical kaons (KchKch) are measured in pp collisions at root s = 7 TeV by the ALICE experiment at the Large Hadron Collider (LHC). One-dimensional (KKch)-K-ch correlation functions are constructed in three multiplicity and four transverse momentum ranges. The (KKch)-K-ch femtoscopic source parameters R and lambda are extracted. The (KKch)-K-ch correlations show a slight increase of femtoscopic radii with increasing multiplicity and a slight decrease of radii with increasing transverse momentum. These trends are similar to the ones observed for pi pi and K-s(0) K-s(0) correlations in pp and heavy-ion collisions. However at high multiplicities, there is an indica…

Nuclear and High Energy PhysicsParticle physicsCOLISÕES DE ÍONS PESADOS RELATIVÍSTICOSLambda01 natural sciencesDECAYSNuclear physicsINTERFEROMETRYPion0103 physical sciences010306 general physicsNuclear ExperimentPhysicsBOSE-EINSTEIN CORRELATIONS; COULOMB CORRECTIONS; INTERFEROMETRY; INTERFERENCE; DECAYS; Z(0)COULOMB CORRECTIONSINTERFERENCELarge Hadron Collider010308 nuclear & particles physicsPhysicsMultiplicity (mathematics)Bose–Einstein correlationsZ(0)BOSE-EINSTEIN CORRELATIONSTransverse momentumHigh Energy Physics::Experimentkaon ; correlation ; ALICEPhysical Review D
researchProduct

Measurement of pion, kaon and proton production in proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym…

2015

The measurement of primary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{\pm }$$\end{document}π±, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{\pm }$$\end{document}K±, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrs…

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Forward-central two-particle correlations in p–Pb collisions at sNN=5.02 TeV

2016

Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 < |η| < 4.0) and associated particles in the cen

Physicscongenital hereditary and neonatal diseases and abnormalitiesNuclear and High Energy PhysicsParticle physicsTime projection chamber010308 nuclear & particles physicsAtlas detector01 natural sciencesCharged particleNuclear physicsMuon spectrometerPseudorapidity0103 physical sciencesTransverse momentumRapidityMultiplicity (chemistry)010306 general physicsPhysics Letters B
researchProduct

Linear and non-linear flow mode in Pb–Pb collisions at sNN=2.76 TeV

2017

The second and the third order anisotropic flow, V2 and V3, are mostly determined by the corresponding initial spatial anisotropy coefficients, e2 and e3, in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, Vn (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow Vn for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider. The measurements are done for particles in the pseudorapidity range |η| < 0.8 and the…

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsHadron01 natural sciencesNuclear physicsThird orderViscosityFlow (mathematics)Pseudorapidity0103 physical sciencesRapidityBoundary value problem010306 general physicsAnisotropyPhysics Letters B
researchProduct

Production of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}…

2016

The production of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document}∗(892)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{0}$$\end{document}0 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage…

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Suppression of charged particle production at large transverse momentum in central Pb–Pb collisions at sNN=2.76 TeV

2011

Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at root s(NN) = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in |eta| < 0.8 and 0.3 < p(T) < 20 GeV/c are compared to the expectation in pp collisions at the same root s(NN), scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor R-AA. The result indicates only weak medium effects (R-AA approximate to 0.7) in peripheral collisions. In cen…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsHadronModification factor01 natural sciencesCentral regionSpectral lineCharged particleNuclear physicsCross section (physics)0103 physical sciencesTransverse momentumNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Two-pion Bose–Einstein correlations in central Pb–Pb collisions at sNN=2.76 TeV

2011

The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at root(NN)-N-S = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC. (C) 2010 CERN. Published by Elsevier B.V. All rights reserved.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsNuclear TheoryBose–Einstein correlationsDecoupling (cosmology)01 natural sciencesNuclear physicsPion0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Azimuthally Differential Pion Femtoscopy in Pb-Pb Collisions at sNN=2.76  TeV

2017

We present the first azimuthally differential measurements of the pion source size relative to the second harmonic event plane in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of √sNN = 2.76 TeV. The measurements have been performed in the centrality range 0%-50% and for pion pair transverse momenta 0.2 < kT < 0.7 GeV/c. We find that the Rside and Rout radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate out of phase, similar to what was observed at the Relativistic Heavy Ion Collider. The final-state source eccentricity, estimated via Rside oscillations, is found to be significantly sma…

PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsOscillationmedia_common.quotation_subjectNuclear TheoryHadronGeneral Physics and Astronomy01 natural sciencesNuclear physicsTransverse planePion0103 physical sciencesRapidityEccentricity (behavior)Nuclear Experiment010306 general physicsRelativistic Heavy Ion Collidermedia_commonPhysical Review Letters
researchProduct

Production of 4He and 4He‾ in Pb–Pb collisions at sNN=2.76TeV at the LHC

2018

Results on the production of 4 He and He‾4 nuclei in Pb–Pb collisions at sNN=2.76TeV in the rapidity range |y|<1 , using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0–10% central events are found to be dN/dyHe4=(0.8±0.4(stat)±0.3(syst))×10−6 and dN/dyHe‾4=(1.1±0.4(stat)±0.2(syst))×10−6 , respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature ( Tchem=156MeV ) as for light hadrons. The measured ratio of He‾4/4He is 1.4±0.8(stat)±0.5(syst) .

PhysicsNuclear and High Energy PhysicsParticle physicsTime projection chamberLarge Hadron ColliderTime of flight detector010308 nuclear & particles physicsHadron01 natural sciences0103 physical sciencesQuark–gluon plasmaRapidityThermal model010306 general physicsNuclear Physics A
researchProduct

Direct photon production in Pb–Pb collisions atsNN=2.76 TeV

2016

Direct photon production at mid-rapidity in Pb–Pb collisions at √sNN = 2.76 TeV was studied in the transverse momentum range 0.9<pT<14 GeV/c. Photons were detected with the highly segmented electromagnetic calorimeter PHOS and via conversions in the ALICE detector material with the e+e− pair reconstructed in the central tracking system. The results of the two methods were combined and direct photon spectra were measured for the 0–20%, 20–40%, and 40–80% centrality classes. For all three classes, agreement was found with perturbative QCD calculations for pT≳5 GeV/c. Direct photon spectra down to pT≈1 GeV/c could be extracted for the 20–40% and 0–20% centrality classes. The significance of th…

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsPhoton010308 nuclear & particles physicsHadronBremsstrahlungPerturbative QCD01 natural sciencesParticle identificationNuclear physics0103 physical sciencesRapidityNuclear Experiment010306 general physicsGlauberPhysics Letters B
researchProduct

Production of muons from heavy-flavour hadron decays in p–Pb collisions at sNN=5.02 TeV

2017

Abstract The production of muons from heavy-flavour hadron decays in p–Pb collisions at s NN = 5.02 TeV was studied for 2 p T 16 GeV/c with the ALICE detector at the CERN LHC. The measurement was performed at forward (p-going direction) and backward (Pb-going direction) rapidity, in the ranges of rapidity in the centre-of-mass system (cms) 2.03 y cms 3.53 and − 4.46 y cms − 2.96 , respectively. The production cross sections and nuclear modification factors are presented as a function of transverse momentum ( p T ). At forward rapidity, the nuclear modification factor is compatible with unity while at backward rapidity, in the interval 2.5 p T 3.5 GeV/c, it is above unity by more than 2σ. Th…

PhysicsNuclear and High Energy PhysicsParticle physicsMuonLarge Hadron ColliderPhysics::Instrumentation and Detectors010308 nuclear & particles physicsHadronFlavourNuclear matter7. Clean energy01 natural sciencesNuclear physics0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentProduction (computer science)RapidityNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Kaon femtoscopy in Pb-Pb collisions at √sNN=2.76 TeV

2017

We present the results of three-dimensional femtoscopic analyses for charged and neutral kaons recorded by ALICE in Pb-Pb collisions at √ s NN = 2.76 TeV. Femtoscopy is used to measure the space-time characteristics of particle production from the effects of quantum statistics and final-state interactions in two-particle correlations. Kaon femtoscopy is an important supplement to that of pions because it allows one to distinguish between different model scenarios working equally well for pions. In particular, we compare the measured three-dimensional kaon radii with a purely hydrodynamical calculation and a model where the hydrodynamic phase is followed by a hadronic rescattering stage. The…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Pb-PbHadronNuclear TheoryPb-Pb collisionshiukkasfysiikkaHEAVY-ION COLLISIONSPPCOLLABORATION7. Clean energy01 natural sciencesParticle identificationHYDRODYNAMICSALICEDEPENDENCENuclear ExperimentPhysicsCOULOMB CORRECTIONSTime projection chamberLarge Hadron ColliderVDP::Kjerne- og elementærpartikkelfysikk: 431PRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431BOSE-EINSTEIN CORRELATIONSTransverse massLHCkaonParticle physicsNuclear and High Energy PhysicskaonsNuclear physicsINTERFEROMETRYPionfemtoscopy0103 physical sciencesNuclear and High Energy Physics; ALICE; LHCPARTICLESparticle physics010306 general physicsScalingNuclear and High Energy Physicta114010308 nuclear & particles physics2.76TeVHEAVY-ION COLLISIONS; BOSE-EINSTEIN CORRELATIONS; COULOMB CORRECTIONS; INTERFEROMETRY; MATTER; PP; COLLABORATION; HYDRODYNAMICS; DEPENDENCE; PARTICLESBose–Einstein correlationsNATURAL SCIENCES. Physics.High Energy Physics::ExperimentMATTERkaon femtoscopy Pb-Pb 2.76TeV
researchProduct

Precision measurement of the mass difference between light nuclei and anti-nuclei

2015

The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons and anti-deuterons, and $^{3}{\rm He}$ and $^3\overline{\rm He}…

electronQuarkspectroscopyAntiparticleParticle physicsPhysics of Elementary Particles and FieldsCPT symmetryStrong interactionNuclear TheoryantunucleiFOS: Physical sciencesAntiprotonGeneral Physics and Astronomy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ElectronHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Physics - ExperimentNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentAntihydrogenSpectroscopyNuclear Physicsantihydrogenmass measurementQuantum chromodynamicsPhysicsanti-nucleita114SPECTROSCOPY; ANTIHYDROGEN; ANTIPROTON; ELECTRONmass difference nuclei antunucleiHigh Energy Physics::Phenomenologymass differenceNATURAL SCIENCES. Physics.3. Good healthGluonPRIRODNE ZNANOSTI. Fizika.antiprotonnucleiQuark–gluon plasmamassmass difference ; nuclei ; anti-nuclei ; ALICE ; CERNHigh Energy Physics::ExperimentNucleon
researchProduct

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb–Pb collisions at sNN=2.76 TeV

2017

We present the charged-particle pseudorapidity density in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02\,\mathrm{Te\kern-.25exV}$ in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from $-3.5$ to $5$, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0-5%) collisions we find $21\,400\pm 1\,300$ while for the most peripheral (80-90%) we find $230\pm 38$. This corresponds to an increase of $(27\pm4)\%$ over the results at $\sqrt{s_{\mathrm{NN}}}=2.76\,\mathrm{Te\kern-.25exV}$ previously reported by ALICE. The energy dependence of the total number of charged particles…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsExtrapolation01 natural sciencesCharged particleColor-glass condensateNuclear physicsPseudorapidity0103 physical sciencesQuark–gluon plasmaRapidityImpact parameterCentralityNuclear Experiment010306 general physicsNucleonGlauberScalingPhysics Letters B
researchProduct

Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

2016

ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons a…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Physics::Instrumentation and Detectorshigh muon multiplicity01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICECERN[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)Nuclear Experimentcosmic rayPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Large Hadron ColliderDetectorVDP::Kjerne- og elementærpartikkelfysikk: 431ENERGY-SPECTRUMPRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGcosmic rays detectorsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics and Astronomy[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FOS: Physical sciencescosmic ray experimentCosmic ray[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]EXTENSIVE AIR-SHOWERScosmic ray ; high muon multiplicity ; ALICE ; CERNBUNDLES114 Physical sciencesREGIONNuclear physicsALICE detectorcosmic rays0103 physical sciencesMultiplicity (chemistry)cosmic rays detector010306 general physicsatmospheric muonsMuon010308 nuclear & particles physicscosmic ray experiments; cosmic rays detectors;EXTENSIVE AIR-SHOWERS; ENERGY-SPECTRUM; BUNDLES; REGION; LEPAstronomy and AstrophysicsLEP115 Astronomy Space scienceNATURAL SCIENCES. Physics.13. Climate actioncosmic ray experiments; cosmic rays detectors; Astronomy and AstrophysicsHigh Energy Physics::Experimentcosmic ray experiments
researchProduct

Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe–Xe collisions at sNN=5.44TeV

2019

In this Letter, the ALICE Collaboration presents the first measurements of the charged-particle multiplicity density, dNch/dη, and total charged-particle multiplicity, Nchtot, in Xe–Xe collisions at a centre-of-mass energy per nucleon–nucleon pair of sNN=5.44TeV. The measurements are performed as a function of collision centrality over a wide pseudorapidity range of −3.5&lt;η&lt;5. The values of dNch/dη at mid-rapidity and Nchtot for central collisions, normalised to the number of nucleons participating in the collision (Npart) as a function of sNN follow the trends established in previous heavy-ion measurements. The same quantities are also found to increase as a function of Npart, and up …

Quantum chromodynamicsPhysicsNuclear and High Energy Physics010308 nuclear & particles physicsMultiplicity (mathematics)01 natural sciencesCharged particleNuclear physicsPseudorapidity0103 physical sciencesQuark–gluon plasmaRapidityImpact parameterNuclear Experiment010306 general physicsNucleonPhysics Letters B
researchProduct

Beauty production in pp collisions at s=2.76 TeV measured via semi-electronic decays

2014

The ALICE Collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity |y|<0.8 and transverse momentum 1<pT<10 GeV/c, in pp collisions at s=2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD predictions agree with the measured cross section within the exper…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsHadronPerturbative QCDElectron01 natural sciences7. Clean energyNuclear physicsPhase space0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentRapidityImpact parameterNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Measurement of dielectron production in central Pb-Pb collisions at √sNN = 2.76 TeV

2019

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. The first measurement of dielectron (e + e −) production in central (0 – 10 %) Pb – Pb collisions at √sNN=2.76TeV at the LHC is presented. The dielectron invariant-mass spectrum is compared to the expected contributions from hadron decays in the invariant-mass range 0 < mee < 3.5 GeV / c2. The ratio of data and the cocktail of hadronic contributions without vacuum ρ0 is measured in the invariant-mass range 0.15 < mee < 0.7 GeV / c2, w…

virtual [photon]:Kjerne- og elementærpartikkelfysikk: 431 [VDP]heavy ion collisionsHadrondielectron productionhiukkasfysiikkaPP01 natural sciencesS-W INTERACTIONSthermalALICEPhysics::Atomic PhysicsNuclear ExperimentBrookhaven RHIC CollPhysicsAU COLLISIONSLarge Hadron Colliderphoton: virtual ; photon: direct production ; heavy ion: scattering ; hadron: decay ; Brookhaven RHIC Coll ; transverse momentum ; CERN LHC Coll ; thermal ; ALICE ; mesonVDP::Kjerne- og elementærpartikkelfysikk: 431DIRECT PHOTON PRODUCTIONddc::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]PRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollVDP::Nuclear and elementary particle physics: 431Transverse momentumNuclear and High Energy PhysicsRho mesondirect production [photon]MesonPAIR PRODUCTIONPhoton lepton & quark productiontransverse momentumFew-body systemsmesonNuclear physicsDIRECT PHOTON PRODUCTION; S-W INTERACTIONS; AU COLLISIONS; RHO-MESON; DIMUON PRODUCTION; PAIR PRODUCTION; PP; J/PSI; ENHANCEMENT; EMISSIONENHANCEMENTscattering [heavy ion]0103 physical sciencesRelativistic heavy-ion collisionsRHO-MESON010306 general physicsParticle & resonance productionNuclear Physicsta114010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]NATURAL SCIENCES. Physics.J/PSIPair productionDIMUON PRODUCTIONQuark–gluon plasmaHigh Energy Physics::ExperimentEMISSIONdecay [hadron]
researchProduct

Elliptic Flow in Pb-Pb Collisions at

2017

We report a precise measurement of the J/ψ elliptic flow in Pb-Pb collisions at sNN=5.02  TeV with the ALICE detector at the LHC. The J/ψ mesons are reconstructed at midrapidity (|y|<0.9) in the dielectron decay channel and at forward rapidity (2.5<y<4.0) in the dimuon channel, both down to zero transverse momentum. At forward rapidity, the elliptic flow v2 of the J/ψ is studied as a function of the transverse momentum and centrality. A positive v2 is observed in the transverse momentum range 2<pT<8  GeV/c in the three centrality classes studied and confirms with higher statistics our earlier results at sNN=2.76  TeV in semicentral collisions. At midrapidity, the J/ψ  v2 is investigated as …

QuarkPhysicsMeson010308 nuclear & particles physicsElliptic flowGeneral Physics and AstronomyQuarkonium01 natural sciencesCharm quarkNuclear physicsMomentum0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentRapidityNuclear Experiment010306 general physics
researchProduct

Multi-strange baryon production in p Pb collisions at sNN=5.02 TeV

2016

The multi-strange baryon yields in Pb--Pb collisions have been shown to exhibit an enhancement relative to pp reactions. In this work, $\Xi$ and $\Omega$ production rates have been measured with the ALICE experiment as a function of transverse momentum, ${p_{\rm T}}$, in p-Pb collisions at a centre-of-mass energy of ${\sqrt{s_{\rm NN}}}$ = 5.02 TeV. The results cover the kinematic ranges 0.6 GeV/$c<{p_{\rm T}} <$7.2 GeV/$c$ and 0.8 GeV/$c<{p_{\rm T}}<$ 5 GeV/$c$, for $\Xi$ and $\Omega$ respectively, in the common rapidity interval -0.5 $<{y_{\rm CMS}}<$ 0. Multi-strange baryons have been identified by reconstructing their weak decays into charged particles. The ${p_{\rm T}}$ spectra are ana…

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsHadronHyperonStrangeness7. Clean energy01 natural sciencesCharged particleNuclear physicsBaryonPion0103 physical sciencesQuark–gluon plasmaRapidityNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Centrality Dependence of the Charged-Particle Multiplicity Density at Midrapidity in Pb-Pb Collisions atsNN=5.02  TeV

2016

The pseudorapidity density of charged particles, dNch/dη, at midrapidity in Pb-Pb collisions has been measured at a center-of-mass energy per nucleon pair of √sNN=5.02 TeV. For the 5% most central collisions, we measure a value of 1943 ± 54. The rise in dNch/dη as a function of √sNN p is steeper than that observed in proton-proton collisions and follows the trend established by measurements at lower energy. The increase of dNch/dη as a function of the average number of participant nucleons, ⟨Npart⟩, calculated in a Glauber model, is compared with the previous measurement at √sNN=2.76 TeV. A constant factor of about 1.2 describes the increase in dNch/dη from √sNN=2.76 to 5.02 TeV for all cen…

PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsGeneral Physics and Astronomy01 natural sciencesCharged particleNuclear physicsPseudorapidity0103 physical sciencesQuark–gluon plasmaImpact parameterMultiplicity (chemistry)Nuclear Experiment010306 general physicsNucleonGlauberPhysical Review Letters
researchProduct

Measurement of quarkonium production at forward rapidity in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfo…

2014

The inclusive production cross sections at forward rapidity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{J}/\psi }$$\end{document}J/ψ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi (\mathrm{2S})}$$\end{document}ψ(2S), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} …

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Centrality dependence of charged jet production in p–Pb collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepac…

2016

Measurements of charged jet production as a function of centrality are presented for  p–Pb  collisions recorded at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s_\mathrm {NN}}= 5.02$$\end{document}sNN=5.02 TeV with the ALICE detector. Centrality classes are determined via the energy deposit in neutron calorimeters at zero degree, close to the beam direction, to minimise dynamical biases of the selection. The corresponding number of participants or binary nucleon–nucleon collisions is determined based on…

Regular Article - Theoretical PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Azimuthal anisotropy of charged jet production in sNN=2.76 TeV Pb–Pb collisions

2016

We present measurements of the azimuthal dependence of charged jet production in central and semicentral √sNN = 2.76 TeV Pb–Pb collisions with respect to the second harmonic event plane, quantified as vch jet 2 . Jet finding is performed employing the anti-kT algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero vch jet 2 is observed in semi-central …

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsJet (fluid)Particle physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical Phenomena01 natural sciencesCharged particleNuclear physics0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsAnisotropyParton showerEvent (particle physics)Event generatorPhysics Letters B
researchProduct

Determination of the event collision time with the ALICE detector at the LHC

2017

The European physical journal / Plus 132(2), 99 (2017). doi:10.1140/epjp/i2017-11279-1

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsmeasurement methodsGeneral Physics and Astronomycollision time01 natural sciencesParticle identificationALICEscattering [p p]Nuclear Experiment (nucl-ex)Detectors and Experimental Techniquesscattering [nucleus nucleus]time resolutionNuclear ExperimentPhysicsLarge Hadron ColliderDetectorInstrumentation and Detectors (physics.ins-det)nucleus nucleus: scatteringPower (physics)PRIRODNE ZNANOSTI. Fizika.Time of flightLHCParticle physicsp p: scatteringPhysics and Astronomy (all) ALICE LHCeventFOS: Physical sciencesPhysics and Astronomy(all)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]time-of-flight530114 Physical sciencesNuclear physicsALICE detectorPhysics and Astronomy (all)0103 physical sciencesddc:530Nuclear Physics - Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]:Matematikk og Naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]010306 general physicsp nucleus: scattering010308 nuclear & particles physicsscattering [p nucleus]PERFORMANCECollisionNATURAL SCIENCES. Physics.efficiencyALICE ; event ; collision timeALICE (propellant)particle identificationEvent (particle physics)
researchProduct

Measurement of Z 0 -boson production at large rapidities in Pb–Pb collisions at

2018

The production of Z0 bosons at large rapidities in Pb–Pb collisions at √sNN=5.02TeV is reported. Z0 candidates are reconstructed in the dimuon decay channel (Z0→μ+μ−), based on muons selected with pseudo-rapidity −4.0 20GeV/c. The invariant yield and the nuclear modification factor, RAA, are presented as a function of rapidity and collision centrality. The value of RAA for the 0–20% central Pb–Pb collisions is 0.67±0.11(stat.)±0.03(syst.)±0.06(corr. syst.), exhibiting a deviation of 2.6σ from unity. The results are well-described by calculations that include nuclear modifications of the parton distribution functions, while the predictions using vacuum PDFs deviate from data by 2.3σ in the 0…

Nuclear reactionPhysicsNuclear and High Energy PhysicsLarge Hadron ColliderMuon010308 nuclear & particles physicsParton01 natural scienceslaw.inventionNuclear physicslaw0103 physical sciencesRapidityImpact parameter010306 general physicsColliderBoson
researchProduct

Performance of the ALICE VZERO system

2013

ALICE is an LHC experiment devoted to the study of strongly interacting matter in proton-proton, proton--nucleus and nucleus-nucleus collisions at ultra-relativistic energies. The ALICE VZERO system, made of two scintillator arrays at asymmetric positions, one on each side of the interaction point, plays a central role in ALICE. In addition to its core function as a trigger, the VZERO system is used to monitor LHC beam conditions, to reject beam-induced backgrounds and to measure basic physics quantities such as luminosity, particle multiplicity, centrality and event plane direction in nucleus-nucleus collisions. After describing the VZERO system, this publication presents its performance o…

Particle physicsPhysics::Instrumentation and DetectorsLarge detector-systems performance Trigger detectors Large detector systems for particle and astroparticle physics Heavy-ion detectorsmedia_common.quotation_subjectHeavy-ion detectorsNuclear Theorylarge detector-systems performanceFOS: Physical sciencesVZERO detectorlarge detector systems for particle and astroparticle physicsScintillator[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesAsymmetrytrigger detectors; large detector systems for particle and astroparticle physics; heavy-ion detectors; large detector-systems performancetrigger detectorsNuclear physics0103 physical sciencesALICE; trigger; V0NUCLEAR COLLISIONSNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentInstrumentationNuclear ExperimentV0 DETECTORMathematical PhysicsCore functionLarge detector-systems performance; Trigger detectors; Large detector systems for particle and astroparticle physics; Heavy-ion detectors; V0 DETECTOR; NUCLEAR COLLISIONSTrigger detectormedia_commonLarge detector-systems performancePhysicsLarge Hadron ColliderInteraction pointLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsALICE experimentTrigger detectorsLarge detector systems for particle and astroparticle physicheavy-ion detectorsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCentralityLarge detector-systems performance; Trigger detectors; Large detector systems for particle and astroparticle physics; Heavy-ion detectorsParticle Physics - Experiment
researchProduct

The ALICE Collaboration

2009

The production of mesons containing strange quarks (KS, φ) and both singly and doubly strange baryons ( , , and − + +) are measured at mid-rapidity in pp collisions at √ s = 0.9 TeV with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momentum spectra at mid-rapidity for inelastic pp collisions are presented. For mesons, we report yields (〈dN/dy〉) of 0.184 ± 0.002(stat.) ± 0.006(syst.) for KS and 0.021 ± 0.004(stat.) ± 0.003(syst.) for φ. For baryons, we find 〈dN/dy〉 = 0.048 ± 0.001(stat.) ± 0.004(syst.) for , 0.047 ± 0.002(stat.) ± 0.005(syst.) for and 0.0101 ± 0.0…

PhysicsStrange quarkNuclear and High Energy PhysicsLarge Hadron ColliderMeson010308 nuclear & particles physics7. Clean energy01 natural sciencesSpectral lineVisual artsNuclear physicsBaryonMinimum biasTransverse momentum0103 physical sciencesHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsALICE (propellant)Nuclear Experiment010306 general physics
researchProduct

Coherent ψ(2S) photo-production in ultra-peripheral Pb Pb collisions at sNN=2.76 TeV

2015

We have performed the first measurement of the coherent ψ(2S) photo-production cross section in ultraperipheral Pb–Pb collisions at the LHC. This charmonium excited state is reconstructed via the ψ(2S) → l +l − and ψ(2S) → J/ψπ+π− decays, where the J/ψ decays into two leptons. The analysis is based on an event sample corresponding to an integrated luminosity of about 22 μb−1. The cross section for coherent ψ(2S) production in the rapidity interval −0.9 < y < 0.9 is dσcoh ψ(2S)/dy = 0.83±0.19 stat+syst mb. The ψ(2S) to J/ψ coherent cross section ratio is 0.34+0.08 −0.07(stat + syst). The obtained results are compared to predictions from theoretical models.

Nuclear physicsPhysicsNuclear and High Energy PhysicsParticle physicsMesonBranching fractionHadronRapidityWave function7. Clean energyGlauberParticle identificationCrystal BallPhysics Letters B
researchProduct

Measurement of electrons from heavy-flavour hadron decays in p–Pb collisions at sNN=5.02TeV

2016

The production of electrons from heavy-flavour hadron decays was measured as a function of transverse momentum (pT) in minimum-bias p–Pb collisions at √sNN = 5.02 TeV using the ALICE detector at the LHC. The measurement covers the pT interval 0.5 < pT < 12 GeV/c and the rapidity range −1.065 < ycms < 0.135 in the centre-of-mass reference frame. The contribution of electrons from background sources was subtracted using an invariant mass approach. The nuclear modification factor RpPb was calculated by comparing the pT-differential invariant cross section in p–Pb collisions to a pp reference at the same centre-of-mass energy, which was obtained by interpolating measurements at √s = 2.76 TeV an…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsHadronQuarkoniumNuclear matter01 natural sciences7. Clean energyParticle identificationNuclear physics0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentInvariant massRapidityNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Centrality determination of Pb-Pb collisions atsNN=2.76TeV with ALICE

2013

This publication describes the methods used to measure the centrality of inelastic Pb-Pb collisions at a center-of-mass energy of 2.76 TeV per colliding nucleon pair with ALICE. The centrality is a key parameter in the study of the properties of QCD matter at extreme temperature and energy density, because it is directly related to the initial overlap region of the colliding nuclei. Geometrical properties of the collision, such as the number of participating nucleons and the number of binary nucleon-nucleon collisions, are deduced from a Glauber model with a sharp impact parameter selection and shown to be consistent with those extracted from the data. The centrality determination provides …

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsNuclear TheoryBinary numberCollision01 natural sciencesMeasure (mathematics)Nuclear physics0103 physical sciencesImpact parameterNuclear Experiment010306 general physicsNucleonCentralityGlauberQCD matterPhysical Review C
researchProduct

Measurement of jet suppression in central Pb–Pb collisions at sNN=2.76 TeV

2015

The transverse momentum(p(T)) spectrum and nuclear modification factor (R-AA) of reconstructed jets in 0-10% and 10-30% central Pb-Pb collisions at root s(NN) = 2.76 TeV were measured. Jets were reconstructed using the anti-k(T) jet algorithm with a resolution parameter of R = 0.2 from charged and neutral particles, utilizing the ALICE tracking detectors and Electromagnetic Calorimeter (EMCal). The jet p(T) spectra are reported in the pseudorapidity interval of \eta(jet)\ 5 GeV/c to suppress jets constructed from the combinatorial background in Pb-Pb collisions. The leading charged particle requirement applied to jet spectra both in pp and Pb-Pb collisions had a negligible effect on the R-A…

PhysicsNuclear and High Energy PhysicsParticle physicsJet (fluid)Large Hadron ColliderAstrophysics::High Energy Astrophysical PhenomenaSpectral lineCharged particleNuclear physicsPseudorapidityHigh Energy Physics::ExperimentRapidityNuclear ExperimentJet quenchingNeutral particlePhysics Letters B
researchProduct

Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p–Pb collisions at sNN=5.02 TeV

2016

The production of charged pions, kaons and (anti)protons has been measured at mid-rapidity ($-0.5 10$ GeV/$c$), the particle ratios are consistent with those reported for pp and Pb-Pb collisions at the LHC energies. At intermediate $p_{\rm T}$ the (anti)proton $R_{\rm pPb}$ shows a Cronin-like enhancement, while pions and kaons show little or no nuclear modification. At high $p_{\rm T}$ the charged pion, kaon and (anti)proton $R_{\rm pPb}$ are consistent with unity within statistical and systematic uncertainties.

PhysicsNuclear and High Energy PhysicsParticle physicsProton010308 nuclear & particles physicsNuclear TheoryHadron7. Clean energy01 natural sciencesParticle identificationCharged particleNuclear physicsPionAntiproton0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentRapidityNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb–Pb collisions at sNN=2.76 TeV

2016

State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Inst…

PhysicsNuclear and High Energy PhysicsLatin AmericansHigher educationEuropean community010308 nuclear & particles physicsbusiness.industryAtomic energyEuropean researchIndustrial researchLibrary science01 natural sciences7. Clean energyBildungNuclear physics0103 physical sciences010306 general physicsChinabusinessPhysics Letters B
researchProduct

Measurement of an Excess in the Yield ofJ/ψat Very LowpTin Pb–Pb Collisions atsNN=2.76  TeV

2016

We report on the first measurement of an excess in the yield of J/ψ at very low transverse momentum (pT< 0.3 GeV/c) in peripheral hadronic Pb-Pb collisions at √sNN = 2.76 TeV, performed by ALICE at the CERN LHC. Remarkably, the measured nuclear modification factor of J/ψ in the rapidity range 2.5< y< 4 reaches about 7 (2) in the pT range 0- 0.3 GeV/c in the 70-90% (50-70%) centrality class. The J/ψ production cross section associated with the observed excess is obtained under the hypothesis that coherent photoproduction of J/ψ is the underlying physics mechanism. If confirmed, the observation of J/ψ coherent photoproduction in Pb-Pb collisions at impact parameters smaller than twice the nuc…

Nuclear reactionPhysicsParticle physics010308 nuclear & particles physicsBranching fractionNuclear TheoryHadronGeneral Physics and AstronomyQuarkonium01 natural sciences7. Clean energyNuclear physics13. Climate action0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentRapidityImpact parameterNuclear Experiment010306 general physicsGlauberPhysical Review Letters
researchProduct

Production of inclusive ϒ(1S) and ϒ(2S) in p–Pb collisions at sNN=5.02 TeV

2015

We report on the production of inclusive Y{hooktop}(1S) and Y{hooktop}(2S) in p-Pb collisions at √sNN=5.02 TeV at the LHC. The measurement is performed with the ALICE detector at backward (-4.46<ycms<-2.96) and forward (2.03<ycms<3.53) rapidity down to zero transverse momentum. The production cross sections of the Y{hooktop}(1S) and Y{hooktop}(2S) are presented, as well as the nuclear modification factor and the ratio of the forward to backward yields of Y{hooktop}(1S). A suppression of the inclusive Y{hooktop}(1S) yield in p-Pb collisions with respect to the yield from pp collisions scaled by the number of binary nucleon-nucleon collisions is observed at forward rapidity but not at backwar…

Quantum chromodynamicsNuclear physicsPhysicsNuclear and High Energy PhysicsLarge Hadron ColliderYield (chemistry)Transverse momentumBinary numberProduction (computer science)RapidityNuclear Experiment7. Clean energyColor-glass condensatePhysics Letters B
researchProduct

Energy dependence of the transverse momentum distributions of charged particles in pp collisions measured by ALICE

2013

Differential cross sections of charged particles in inelastic pp collisions as a function of $p_{\rm T}$ have been measured at $\sqrt{s}=$ 0.9, 2.76 and 7 TeV at the LHC. The $p_{\rm T}$ spectra are compared to NLO-pQCD calculations. Though the differential cross section for an individual $\sqrt{s}$ cannot be described by NLO-pQCD, the relative increase of cross section with $\sqrt{s}$ is in agreement with NLO-pQCD. Based on these measurements and observations, procedures are discussed to construct pp reference spectra at $\sqrt{s} =$ 2.76 and 5.02 TeV up to $p_{\rm T}$ = 50 GeV/$c$ as required for the calculation of the nuclear modification factor in nucleus-nucleus and proton-nucleus coll…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Physics and Astronomy (miscellaneous)heavy ion collisionsNuclear Theory01 natural sciences7. Clean energySpectral lineHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)pp collisionALICEpp collisions; transverse momentum; ALICE[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)transverse momentum distributionNuclear ExperimentNuclear ExperimentPhysicsLarge Hadron Collidertransverse momentum; pp; ALICE; charged particlesPhysicsCharged particle3. Good health:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]:Nuclear and elementary particle physics: 431 [VDP]Transverse momentumLhcDiffractionpp collisionsParticle Physics - ExperimentRegular Article - Experimental PhysicsVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431particle productionFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]transverse momentumtransverse momentum distribution; PP COLLISIONSNuclear physicsRoot-S(Nn)=2.76 TevCross section (physics)0103 physical sciencesNuclear Physics - ExperimentPb-Pb Collisions010306 general physicsEngineering (miscellaneous)SuppressionALICE experiment; particle production; heavy ion collisionsVDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTransverse momentum distributions:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]ALICE experimentFunction (mathematics)Proton-Proton Collisionsp-p collisionHigh Energy Physics::ExperimentALICE (propellant)Energy (signal processing)
researchProduct

Measurement of visible cross sections in proton-lead collisions at √sNN= 5.02 TeV in van der Meer scans with the ALICE detector

2014

In 2013, the Large Hadron Collider provided proton-lead and lead-proton collisions at the center-of-mass energy per nucleon pair $\sqrt{s_{\rm{NN}}}=5.02$ TeV. Van der Meer scans were performed for both configurations of colliding beams, and the cross section was measured for two reference processes, based on particle detection by the T0 and V0 detectors, with pseudo-rapidity coverage $4.6<\eta< 4.9$, $-3.3<\eta<-3.0$ and $2.8<\eta< 5.1$, $-3.7<\eta<-1.7$, respectively. Given the asymmetric detector acceptance, the cross section was measured separately for the two configurations. The measured visible cross sections are used to calculate the integrated luminosity of the proton-lead and lead-…

ProtonNuclear Theorylarge detector systems for particle and astroparticle physicsLarge detector systems for particle and astroparticle physics; Particle tracking detec- tors; Heavy-ion detectors01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Particle tracking detectorsparticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutron detectionNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentInstrumentationMathematical PhysicsPhysicsLarge Hadron ColliderLuminosity (scattering theory)PhysicsDetectorLuminosity measurement3. Good healthPRIRODNE ZNANOSTI. Fizika.Large detector systems for particle and astroparticle physics Particle tracking detec- torNucleonParticle Physics - ExperimentLarge detector systems for particle and astroparticle physics ; Particle tracking detectors ; Heavy-ion detectorsParticle physicsParticle tracking detec- torsInstrumentationHeavy-ion detectorsFOS: Physical sciencesLarge detector systems for particle and astroparticle physics; Particle tracking detectors; Heavy-ion detectors[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear physicsCross section (physics)p-Pb collisions at the LHC0103 physical sciencesNuclear Physics - Experiment010306 general physics010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsALICE experimentLarge detector systems for particle and astroparticle physics Particle tracking detec- tors; Heavy-ion detectorsNATURAL SCIENCES. Physics.heavy-ion detectorsInstrumentation; Mathematical PhysicsPhysics::Accelerator PhysicsHigh Energy Physics::Experiment
researchProduct

Correlated Event-by-Event Fluctuations of Flow Harmonics in Pb-Pb Collisions at sNN=2.76  TeV

2016

We report the measurements of correlations between event-by-event fluctuations of amplitudes of anisotropic flow harmonics in nucleus-nucleus collisions, obtained for the first time using a new analysis method based on multiparticle cumulants in mixed harmonics. This novel method is robust against systematic biases originating from non-flow effects and by construction any dependence on symmetry planes is eliminated. We demonstrate that correlations of flow harmonics exhibit a better sensitivity to medium properties than the individual flow harmonics. The new measurements are performed in Pb-Pb collisions at the centre-of-mass energy per nucleon pair of $\sqrt{s_{_{\rm NN}}}=2.76$ TeV by the…

PhysicsLarge Hadron Collider010308 nuclear & particles physicsElliptic flowGeneral Physics and Astronomy01 natural sciencesHarmonic analysisNuclear physicsFlow (mathematics)Harmonics0103 physical sciencesQuark–gluon plasmaImpact parameterNuclear Experiment010306 general physicsEnergy (signal processing)Physical Review Letters
researchProduct

Volume III. DUNE far detector technical coordination

2020

The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…

Technology530 PhysicsPhysics::Instrumentation and Detectorsmedia_common.quotation_subjectContext (language use)01 natural sciences09 Engineering030218 nuclear medicine & medical imagingneutrino03 medical and health sciences0302 clinical medicine0103 physical sciencesGrand Unified TheoryDeep Underground Neutrino ExperimentHigh Energy PhysicsInstruments & InstrumentationNeutrino oscillations liquid Argon TPC technical design report technical coordinationInstrumentationMathematical Physicsmedia_commonScience & Technology02 Physical Sciences010308 nuclear & particles physicsDetectorVolume (computing)530 PhysikNuclear & Particles PhysicsUniverseSystems engineeringHigh Energy Physics::ExperimentState (computer science)NeutrinoLong baseline neutrino experiment CP violationJournal of Instrumentation
researchProduct

Particle identification in ALICE: a Bayesian approach

2016

We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The aim is to more effectively combine the particle identification capabilities of its various detectors. After a brief explanation of the adopted methodology and formalism, the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE is studied. PID is performed via measurements of specific energy loss ($\mathrm{d}E/\mathrm{d}x$) and time-of-flight. PID efficiencies and misidentification probabilities are extracted and compared with Monte Carlo simulations using high-purity samples of identified particles in the decay channels ${\rm K}^0_S \righta…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Monte Carlo methodGeneral Physics and AstronomyPID controllerPP01 natural sciencesParticle identificationHigh Energy Physics - ExperimentParticle identificationHigh Energy Physics - Experiment (hep-ex)ALICEHadron-Hadron scattering (experiments)Heavy-ion collisionNuclear and High Energy Physics Hadron-Hadron scattering (experiments) Heavy Ion Experiments Heavy-ion collision Quark gluon plasma Particle identification Bayesianscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)Detectors and Experimental TechniquesNuclear ExperimentNuclear ExperimentPhysicsefficiency [particle identification]PB COLLISIONSVDP::Kjerne- og elementærpartikkelfysikk: 431Monte Carlo [numerical calculations]PB COLLISIONS PP PERFORMANCE.:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]PRIRODNE ZNANOSTI. Fizika.Time of flight:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431performancemomentum spectrum [charged particle]Nuclear and High Energy PhysicsParticle physicsMesoneducationBayesian probabilityFOS: Physical sciencesQuark gluon plasma[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencesBayesianNuclear physicsPhysics and Astronomy (all)PionHeavy Ion Experiments0103 physical sciencesddc:530010306 general physics010308 nuclear & particles physicsBayesian approach:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]ALICE experimentPERFORMANCEparticle identification ; Bayesian approachNATURAL SCIENCES. Physics.PB COLLISIONS; TEV; PP; PERFORMANCEPhysics - Data Analysis Statistics and ProbabilityQuark–gluon plasmaBayesian [statistics]TEVHigh Energy Physics::Experimentparticle identificationData Analysis Statistics and Probability (physics.data-an)
researchProduct

Centrality dependence of the nuclear modification factor of charged pions, kaons, and protons in Pb-Pb collisions atsNN=2.76TeV

2016

Transverse momentum (pT) spectra of pions, kaons, and protons up to pT=20GeV/c have been measured in Pb-Pb collisions at √sNN=2.76TeV using the ALICE detector for six different centrality classes covering 0%–80%. The proton-to-pion and the kaon-to-pion ratios both show a distinct peak at pT≈3GeV/c in central Pb-Pb collisions that decreases for more peripheral collisions. For pT>10GeV/c, the nuclear modification factor is found to be the same for all three particle species in each centrality interval within systematic uncertainties of 10%–20%. This suggests there is no direct interplay between the energy loss in the medium and the particle species composition in the hard core of the quenched…

PhysicsSemileptonic decayParticle physics010308 nuclear & particles physicsNuclear TheoryHadron01 natural sciencesCharged particleParticle identificationBaryonNuclear physicsPion0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsJet quenchingPhysical Review C
researchProduct

J/ψPolarization inppCollisions ats=7  TeV

2012

The ALICE Collaboration has studied J/psi production in pp collisions at root s = 7 TeV at the LHC through its muon pair decay. The polar and azimuthal angle distributions of the decay muons were measured, and results on the J/psi polarization parameters lambda(theta) and lambda(phi) were obtained. The study was performed in the kinematic region 2: 5 < y < 4, 2 < p(t) < 8 GeV/c, in the helicity and Collins-Soper reference frames. In both frames, the polarization parameters are compatible with zero, within uncertainties.

PhysicsParticle physicsMuonLarge Hadron ColliderPhysics::Instrumentation and Detectors010308 nuclear & particles physicsGeneral Physics and AstronomyLambdaPolarization (waves)01 natural sciencesHelicityNuclear physicsAzimuthAngular distribution0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsReference framePhysical Review Letters
researchProduct

Performance of the First ANTARES Detector Line

2009

In this paper we report on the data recorded with the first Antares detector line. The line was deployed on the 14th of February 2006 and was connected to the readout two weeks later. Environmental data for one and a half years of running are shown. Measurements of atmospheric muons from data taken from selected runs during the first six months of operation are presented. Performance figures in terms of time residuals and angular resolution are given. Finally the angular distribution of atmospheric muons is presented and from this the depth profile of the muon intensity is derived.

MODULEPhysics::Instrumentation and DetectorsFOS: Physical sciencesAstrophysics01 natural sciencesNuclear physicsNEUTRINO TELESCOPESAngular distributionantares; deep-sea; first line; neutrino0103 physical sciencesNeutrino[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]WATERAngular resolutionNEUTRINO TELESCOPE010306 general physicsATMOSPHERIC MUONSAstroparticle physicsPhysicsMuonANTARES010308 nuclear & particles physicsAstrophysics (astro-ph)DetectorDeep-seaAstronomy and AstrophysicsTime resolutionGeodesyMUON FLUXFirst lineSINGLEFísica nuclearUNDERWATER DETECTORLine (text file)NeutrinoSYSTEM
researchProduct

J/ production as a function of charged-particle pseudorapidity density in p–Pb collisions at

2017

We report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dNch/dη in p–Pb collisions at sNN=5.02TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dNch/dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyo…

PhysicsNuclear and High Energy PhysicsLarge Hadron Collider010308 nuclear & particles physicsMonte Carlo methodObservableMultiplicity (mathematics)01 natural sciencesCharged particleNuclear physicsPseudorapidity0103 physical sciencesTransverse momentumRapidityNuclear Experiment010306 general physicsPhysics Letters
researchProduct