0000000000505425
AUTHOR
Rudolf Rüffer
Switching Reciprocity On and Off in a Magneto-Optical X-Ray Scattering Experiment Using Nuclear Resonance ofα−Fe57Foils
Reciprocity is when the scattering amplitude of wave propagation satisfies a symmetry property, connecting a scattering process with an appropriate reversed one. We report on an experiment using nuclear resonance scattering of synchrotron radiation, which demonstrates that magneto-optical materials do not necessarily violate reciprocity. The setting enables us to switch easily between reciprocity and its violation. In the latter case, the exhibited reciprocity violation is orders of magnitude larger than achieved by previous wave scattering experiments.
Dynamics of Metal Centers Monitored by Nuclear Inelastic Scattering
Nuclear inelastic scattering of synchrotron radiation has been used now since 10 years as a tool for vibrational spectroscopy. This method has turned out especially useful in case of large molecules that contain a M\"ossbauer active metal center. Recent applications to iron-sulfur proteins, to iron(II) spin crossover complexes and to tin-DNA complexes are discussed. Special emphasis is given to the combination of nuclear inelastic scattering and density functional calculations.
Coarsening of Antiferromagnetic Domains in Multilayers: The Key Role of Magnetocrystalline Anisotropy
The domain structure of an antiferromagnetic superlattice is studied. Synchrotron Mössbauer and polarized neutron reflectometric maps show micrometer-size primary domain formation as the external field decreases from saturation to remanence. A secondary domain state consisting mainly of at least 1 order of magnitude larger domains is created when a small field along the layer magnetizations induces a bulk-spin-flop transition. The domain-size distribution is reproducibly dependent on the magnetic prehistory. The condition for domain coarsening is shown to be the equilibrium of the external field energy with the anisotropy energy.