0000000000509219
AUTHOR
Pawel Baczyk
Isospin-symmetry breaking in masses of ≃ Nuclei
Effects of the isospin-symmetry breaking (ISB) beyond mean-field Coulomb terms are systematically studied in nuclear masses near the N=Z line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density functionals (EDFs) with proton–neutron-mixed densities, to which we add new terms breaking the isospin symmetry. Two parameters associated with the new terms are determined by fitting mirror and triplet displacement energies (MDEs and TDEs) of isospin multiplets. The new EDFs reproduce MDEs for the T=12 doublets and T=1 triplets, and TDEs for the T=1 triplets. Relative strengths of the obtained isospin-symmetry-breaking terms are not consistent with the d…
Isospin-symmetry breaking in masses of $N\simeq Z$ nuclei
Effects of the isospin-symmetry breaking (ISB) beyond mean-field Coulomb terms are systematically studied in nuclear masses near the $N=Z$ line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density functionals (EDFs) with proton-neutron-mixed densities, to which we add new terms breaking the isospin symmetry. Two parameters associated with the new terms are determined by fitting mirror and triplet displacement energies (MDEs and TDEs) of isospin multiplets. The new EDFs reproduce MDEs for the $T=\frac12$ doublets and $T=1$ triplets, and TDEs for the $T=1$ triplets. Relative strengths of the obtained isospin-symmetry-breaking terms {\em are not} co…
Mirror and triplet displacement energies within nuclear DFT: : numerical stability
Isospin-symmetry-violating class II and III contact terms are introduced into the Skyrme energy density functional to account for charge dependence of the strong nuclear interaction. The two new coupling constants are adjusted to available experimental data on triplet and mirror displacement energies, respectively. We present preliminary results of the fit, focusing on its numerical stability with respect to the basis size.