0000000000511692

AUTHOR

Heide-katharina Bauer

Tissue engineered pre-vascularized buccal mucosa equivalents utilizing a primary triculture of epithelial cells, endothelial cells and fibroblasts

Artificial generated buccal mucosa equivalents are a promising approach for the reconstruction of urethral defects. Limiting in this approach is a poor blood vessel supply after transplantation, resulting in increased morbidity and necrosis. We generated a pre-vascularized buccal mucosa equivalent in a tri-culture of primary buccal epithelial cells, fibroblasts and microvascular endothelial cells, using a native collagen membrane as a scaffold. A successful pre-vascularization and dense formation of capillary-like structures at superficial areas was demonstrated. The lumen size of pre-formed blood vessels corresponded to the capillary size in vivo (10-30 μm). Comparing native with a highly …

research product

The impact of intercellular communication for the generation of complex multicellular prevascularized tissue equivalents

In reconstructive surgery the use of prevascularized soft tissue equivalents is a promising approach for wound coverage of defects after tumor resection or trauma. However, in previous studies to generate soft tissue equivalents on collagen membranes, microcapillaries were restricted to superficial areas. In this study, to understand which factors were involved in the formation of these microcapillaries, the levels of the angiogenic factors vascular endothelial growth factor (VEGF), Interleukin-8 (IL-8), and basic fibroblast growth factor (bFGF) in the supernatants of the tissue equivalents were examined at various time points and conditions. Additionally, the influence of these factors on …

research product

Primary Mucosal Epithelial Cell Cultivation: A Reliable and Accelerated Isolation

We illustrate a reliable and accelerated isolation routine for mucosal epithelial cells, which thereupon can be used for soft tissue engineering. This is highly important in the field of soft tissue engineering because mucosal equivalents are frequently usable in several surgical fields like gynecology, urology, otorhinolaryngology, ophthalmology, maxillofacial surgery, and many others. In this context the isolation of mucosal epithelial cells suitable for tissue engineering is mandatory. The reliable cultivation of mucosal or skin epithelial cells is challenging and there is currently no reproducible method. We demonstrate a solution for this problem by developing an accelerated and nevert…

research product