0000000000512096

AUTHOR

José Estévez

0000-0003-4290-3542

showing 5 related works from this author

Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data.

2022

The unprecedented availability of optical satellite data in cloud-based computing platforms, such as Google Earth Engine (GEE), opens new possibilities to develop crop trait retrieval models from the local to the planetary scale. Hybrid retrieval models are of interest to run in these platforms as they combine the advantages of physically-based radiative transfer models (RTM) with the flexibility of machine learning regression algorithms. Previous research with GEE primarily relied on processing bottom-of-atmosphere (BOA) reflectance data, which requires atmospheric correction. In the present study, we implemented hybrid models directly into GEE for processing Sentinel-2 (S2) Level-1C (L1C)…

sentinel-2active learning (AL)Soil ScienceGeologyUNESCO::CIENCIAS TECNOLÓGICASUncertainty estimategaussian processes (GP)google earth engineBiophysical and biochemical crop traiteuclidean distance-based diversity (EBD)top-of-atmosphere reflectancehybrid retrieval methodsHybrid retrieval methoduncertainty estimatesbiophysical and biochemical crop traitsatmosphere radiative transfer modelComputers in Earth SciencesRemote sensing of environment
researchProduct

Quantifying Fundamental Vegetation Traits over Europe Using the Sentinel-3 OLCI Catalogue in Google Earth Engine

2022

Thanks to the emergence of cloud-computing platforms and the ability of machine learning methods to solve prediction problems efficiently, this work presents a workflow to automate spatiotemporal mapping of essential vegetation traits from Sentinel-3 (S3) imagery. The traits included leaf chlorophyll content (LCC), leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and fractional vegetation cover (FVC), being fundamental for assessing photosynthetic activity on Earth. The workflow involved Gaussian process regression (GPR) algorithms trained on top-of-atmosphere (TOA) radiance simulations generated by the coupled canopy radiative transfer model (RTM) SC…

Vegetation traitsTime seriesvegetation traits; Sentinel-3; TOA radiance; OLCI; Gaussian process regression; machine learning; hybrid method; time series; Google Earth EngineTOA radianceMachine learningHybrid methodGeneral Earth and Planetary SciencesMatemática AplicadaSentinel-3OLCIGoogle Earth EngineGaussian process regressionRemote Sensing
researchProduct

Gaussian Processes Retrieval of LAI from Sentinel-2 Top-of-Atmosphere Radiance Data

2020

Abstract Retrieval of vegetation properties from satellite and airborne optical data usually takes place after atmospheric correction, yet it is also possible to develop retrieval algorithms directly from top-of-atmosphere (TOA) radiance data. One of the key vegetation variables that can be retrieved from at-sensor TOA radiance data is leaf area index (LAI) if algorithms account for variability in atmosphere. We demonstrate the feasibility of LAI retrieval from Sentinel-2 (S2) TOA radiance data (L1C product) in a hybrid machine learning framework. To achieve this, the coupled leaf-canopy-atmosphere radiative transfer models PROSAIL-6SV were used to simulate a look-up table (LUT) of TOA radi…

010504 meteorology & atmospheric sciencesMean squared errorComputer science0211 other engineering and technologiesAtmospheric correctionFOS: Physical sciences02 engineering and technology15. Life on land01 natural sciencesAtomic and Molecular Physics and OpticsArticleComputer Science ApplicationsPhysics - Atmospheric and Oceanic PhysicsAtmospheric radiative transfer codesKrigingAtmospheric and Oceanic Physics (physics.ao-ph)RadianceSatelliteComputers in Earth SciencesLeaf area indexScale (map)Engineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing
researchProduct

Top-of-Atmosphere Retrieval of Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow.

2021

In support of cropland monitoring, operational Copernicus Sentinel-2 (S2) data became available globally and can be explored for the retrieval of important crop traits. Based on a hybrid workflow, retrieval models for six essential biochemical and biophysical crop traits were developed for both S2 bottom-of-atmosphere (BOA) L2A and S2 top-of-atmosphere (TOA) L1C data. A variational heteroscedastic Gaussian process regression (VHGPR) algorithm was trained with simulations generated by the combined leaf-canopy reflectance model PROSAILat the BOA scale and further combined with the Second Simulation of a Satellite Signal in the Solar Spectrum (6SV) atmosphere model at the TOA scale. Establishe…

010504 meteorology & atmospheric sciencesMean squared errorScienceReference data (financial markets)MathematicsofComputing_GENERAL0211 other engineering and technologieshybrid model02 engineering and technologyAtmospheric model01 natural sciencessymbols.namesaketop-of-atmosphere reflectanceKrigingLeaf area indexGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsRemote sensing2. Zero hungerQbiophysical and biochemical traits; top-of-atmosphere reflectance; Sentinel-2; variational heteroscedastic Gaussian process regression; hybrid modelvariational heteroscedastic Gaussian process regressionVegetation15. Life on landsymbolsGeneral Earth and Planetary Sciencesbiophysical and biochemical traitsSentinel-2Scale (map)Remote sensing
researchProduct

Monitoring Cropland Phenology on Google Earth Engine Using Gaussian Process Regression

2021

Monitoring cropland phenology from optical satellite data remains a challenging task due to the influence of clouds and atmospheric artifacts. Therefore, measures need to be taken to overcome these challenges and gain better knowledge of crop dynamics. The arrival of cloud computing platforms such as Google Earth Engine (GEE) has enabled us to propose a Sentinel-2 (S2) phenology end-to-end processing chain. To achieve this, the following pipeline was implemented: (1) the building of hybrid Gaussian Process Regression (GPR) retrieval models of crop traits optimized with active learning, (2) implementation of these models on GEE (3) generation of spatiotemporally continuous maps and time seri…

2. Zero hungerland surface phenology (LSP)010504 meteorology & atmospheric sciencesScienceQGoogle Earth Engine (GEE)0211 other engineering and technologiesGaussian Process Regression (GPR)02 engineering and technology15. Life on land01 natural sciencescrop traitsGeneral Earth and Planetary Sciencesland surface phenology (LSP); Google Earth Engine (GEE); Gaussian Process Regression (GPR); Sentinel-2; gap-filling; crop traits; hybrid modelsSentinel-2gap-filling021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote Sensing
researchProduct