6533b86efe1ef96bd12cb64a

RESEARCH PRODUCT

Monitoring Cropland Phenology on Google Earth Engine Using Gaussian Process Regression

Matías Salinero-delgadoJosé EstévezLuca PipiaSantiago BeldaKatja BergerVanessa Paredes GómezJochem Verrelst

subject

2. Zero hungerland surface phenology (LSP)010504 meteorology & atmospheric sciencesScienceQGoogle Earth Engine (GEE)0211 other engineering and technologiesGaussian Process Regression (GPR)02 engineering and technology15. Life on land01 natural sciencescrop traitsGeneral Earth and Planetary Sciencesland surface phenology (LSP); Google Earth Engine (GEE); Gaussian Process Regression (GPR); Sentinel-2; gap-filling; crop traits; hybrid modelsSentinel-2gap-filling021101 geological & geomatics engineering0105 earth and related environmental sciences

description

Monitoring cropland phenology from optical satellite data remains a challenging task due to the influence of clouds and atmospheric artifacts. Therefore, measures need to be taken to overcome these challenges and gain better knowledge of crop dynamics. The arrival of cloud computing platforms such as Google Earth Engine (GEE) has enabled us to propose a Sentinel-2 (S2) phenology end-to-end processing chain. To achieve this, the following pipeline was implemented: (1) the building of hybrid Gaussian Process Regression (GPR) retrieval models of crop traits optimized with active learning, (2) implementation of these models on GEE (3) generation of spatiotemporally continuous maps and time series of these crop traits with the use of gap-filling through GPR fitting, and finally, (4) calculation of land surface phenology (LSP) metrics such as the start of season (SOS) or end of season (EOS). Overall, from good to high performance was achieved, in particular for the estimation of canopy-level traits such as leaf area index (LAI) and canopy chlorophyll content, with normalized root mean square errors (NRMSE) of 9% and 10%, respectively. By means of the GPR gap-filling time series of S2, entire tiles were reconstructed, and resulting maps were demonstrated over an agricultural area in Castile and Leon, Spain, where crop calendar data were available to assess the validity of LSP metrics derived from crop traits. In addition, phenology derived from the normalized difference vegetation index (NDVI) was used as reference. NDVI not only proved to be a robust indicator for the calculation of LSP metrics, but also served to demonstrate the good phenology quality of the quantitative trait products. Thanks to the GEE framework, the proposed workflow can be realized anywhere in the world and for any time window, thus representing a shift in the satellite data processing paradigm. We anticipate that the produced LSP metrics can provide meaningful insights into crop seasonal patterns in a changing environment that demands adaptive agricultural production.

https://doi.org/10.3390/rs14010146