0000000000513165

AUTHOR

Changlin Xiang

showing 4 related works from this author

Quantitative Properties on the Steady States to A Schr\"odinger-Poisson-Slater System

2014

A relatively complete picture on the steady states of the following Schr$\ddot{o}$dinger-Poisson-Slater (SPS) system \[ \begin{cases} -\Delta Q+Q=VQ-C_{S}Q^{2}, & Q>0\text{ in }\mathbb{R}^{3}\\ Q(x)\to0, & \mbox{as }x\to\infty,\\ -\Delta V=Q^{2}, & \text{in }\mathbb{R}^{3}\\ V(x)\to0 & \mbox{as }x\to\infty. \end{cases} \] is given in this paper: existence, uniqueness, regularity and asymptotic behavior at infinity, where $C_{S}>0$ is a constant. To the author's knowledge, this is the first uniqueness result on SPS system.

Mathematics - Analysis of PDEs
researchProduct

Asymptotic behaviors of solutions to quasilinear elliptic equations with Hardy potential

2016

Optimal estimates on asymptotic behaviors of weak solutions both at the origin and at the infinity are obtained to the following quasilinear elliptic equations −Δpu − μ |x| p |u| p−2 u + m|u| p−2 u = f(u), x ∈ RN , where 1 0 and f is a continuous function. peerReviewed

Comparison principleQuasilinear elliptic equationsHardy's inequalityAsymptotic behaviors
researchProduct

Uniqueness of positive solutions to some Nonlinear Neumann Problems

2017

Using the moving plane method, we obtain a Liouville type theorem for nonnegative solutions of the Neumann problem ⎧ ⎨ ⎩ div (ya∇u(x, y)) = 0, x ∈ Rn,y > 0, lim y→0+yauy(x, y) = −f(u(x, 0)), x ∈ Rn, under general nonlinearity assumptions on the function f : R → R for any constant a ∈ (−1, 1). peerReviewed

osittaisdifferentiaaliyhtälötLiouville type theoremNeumann problemmoving plane method
researchProduct

Infinitely many solutions for p-Laplacian equation involving double critical terms and boundary geometry

2014

Let $1p^{2}+p,a(0)>0$ and $\Omega$ satisfies some geometry conditions if $0\in\partial\Omega$, say, all the principle curvatures of $\partial\Omega$ at $0$ are negative, then the above problem has infinitely many solutions.

Mathematics - Analysis of PDEsFOS: Mathematics35J60 35B33 35J60 35B33 35J60 35B33Analysis of PDEs (math.AP)
researchProduct