0000000000514590

AUTHOR

Sandy Chevrier

Detection of KRAS, NRAS and BRAF somatic mutations in circulating tumor DNA using two assays of Next Generation Sequencing (NGS) for patients with metastatic colorectal cancer

National audience

research product

Transcriptome-wide identification of transient RNA G-quadruplexes in human cells

Guanine-rich RNA sequences can fold into four-stranded structures, termed G-quadruplexes (G4-RNAs), whose biological roles are poorly understood, and in vivo existence is debated. To profile biologically relevant G4-RNA in the human transcriptome, we report here on G4RP-seq, which combines G4-RNA-specific precipitation (G4RP) with sequencing. This protocol comprises a chemical crosslinking step, followed by affinity capture with the G4-specific small-molecule ligand/probe BioTASQ, and target identification by sequencing, allowing for capturing global snapshots of transiently folded G4-RNAs. We detect widespread G4-RNA targets within the transcriptome, indicative of transient G4 formation in…

research product

Does large NGS panel analysed using exome tumour sequencing improve the management of advanced non-small-cell lung cancers?

Abstract Introduction Non-small-cell lung cancer (NSCLC) is one of the most common and deadly cancers. Several molecular drivers of oncogene addiction are now known to be strong predictive biomarkers for target therapies. Advances in large Next Generation Sequencing (LNGS) have improved the ability to detect potentially targetable mutations. However, the integration of LNGS into clinical management in an individualized manner remains challenging. Methods In this single-center observational study we included all patients with advanced NSCLC who underwent LNGS. Somatic and germline exome analysis was performed with a restriction on 323 cancer related genes. Variants were classified and Molecu…

research product

Effects of tumor mutation burden on the antigen presentation pathway

AbstractTumor mutation burden (TMB) is used to select patients to receive immune checkpoint inhibitors (ICIs) but has mixed predictive capabilities. We hypothesized that inactivation of antigen presenting genes (APGs) that result from increased TMBs would result in inherent resistance to ICIs. We observed that somatic mutations in APGs were associated with increasing TMBs across 9,418 tumor samples of 33 different histological subtypes. In adenocarcinomas of the lung, ITGAX and CD1B were some of the most commonly mutated APGs. In 62 patients with non-small cell lung cancers treated with a PD-1 inhibitor in second or later lines of therapy, there was an association of increased TMB with muta…

research product

Exome Analysis Reveals Genomic Markers Associated with Better Efficacy of Nivolumab in Lung Cancer Patients

Abstract Purpose: Immune checkpoint inhibitors revolutionized the treatment of non-small cell lung cancer (NSCLC). However, only one-quarter of patients benefit from these new therapies. PD-L1 assessment and tumor mutational burden (TMB) are available tools to optimize use of checkpoint inhibitors but novel tools are needed. Exome sequencing could generate many variables but their role in identifying predictors of response is unknown. Experimental Design: We performed somatic and constitutional exome analyses for 77 patients with NSCLC treated with nivolumab. We studied: one-tumor-related characteristics: aneuploidy, CNA clonality, mutational signatures, TMB, mutations in WNT, AKT, MAPK, an…

research product

An Algorithm Combining Patient Performance Status, Second Hit Analysis, PROVEAN and Dann Prediction Tools Could Foretell Sensitization to PARP Inhibitors in Digestive, Skin, Ovarian and Breast Cancers

Simple Summary PARP inhibitors, a family of targeted cancer therapeutics, have been shown to be efficient in patients with some deficiencies in the homologous recombination machinery. However, a quick and reliable identification of patients who would benefit from such therapies remains a challenge. In particular, patients with tumors carrying variants of unknown significance (VUS) in homologous recombination genes do not currently benefit from PARP inhibitor treatments. In this study, we present an algorithm that may allow classification of these variants with regard to their impact on tumor responsiveness to PARP inhibitors. If validated on a larger patient sample, our algorithm would allo…

research product