6533b828fe1ef96bd1287fdc
RESEARCH PRODUCT
Transcriptome-wide identification of transient RNA G-quadruplexes in human cells
Sunny Y. YangPauline LejaultSandy ChevrierRomain BoidotA. Gordon RobertsonJudy M. Y. WongDavid Monchaudsubject
Cell ExtractsNoncoding RnasScienceGene-Expression[SDV.CAN]Life Sciences [q-bio]/CancerWeb ServerLigandsModels BiologicalArticleExpression AnalysisTranslation Regulation Expression Analysis Gene-Expression Noncoding Rnas Dna Structures Small-Molecule Human Genome Web Server Real-Time ChromatinHumansImmunoprecipitation[CHIM]Chemical Sciences[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyDna Structureslcsh:Science[SDV.GEN]Life Sciences [q-bio]/GeneticsTranslation RegulationQHuman GenomeReal-TimeChromatinG-QuadruplexesMCF-7 CellsRNARNA Long Noncodinglcsh:QTranscriptomeSmall-Moleculedescription
Guanine-rich RNA sequences can fold into four-stranded structures, termed G-quadruplexes (G4-RNAs), whose biological roles are poorly understood, and in vivo existence is debated. To profile biologically relevant G4-RNA in the human transcriptome, we report here on G4RP-seq, which combines G4-RNA-specific precipitation (G4RP) with sequencing. This protocol comprises a chemical crosslinking step, followed by affinity capture with the G4-specific small-molecule ligand/probe BioTASQ, and target identification by sequencing, allowing for capturing global snapshots of transiently folded G4-RNAs. We detect widespread G4-RNA targets within the transcriptome, indicative of transient G4 formation in living human cells. Using G4RP-seq, we also demonstrate that G4-stabilizing ligands (BRACO-19 and RHPS4) can change the G4 transcriptomic landscape, most notably in long non-coding RNAs. G4RP-seq thus provides a method for studying the G4-RNA landscape, as well as ways of considering the mechanisms underlying G4-RNA formation, and the activity of G4-stabilizing ligands.
year | journal | country | edition | language |
---|---|---|---|---|
2018-11-01 |