0000000000519547

AUTHOR

Guo-bin Ding

showing 2 related works from this author

Mechanisms of nanotoxicity – biomolecule coronas protect pathological fungi against nanoparticle-based eradication

2020

Whereas nanotoxicity is intensely studied in mammalian systems, our knowledge of desired or unwanted nano-based effects for microbes is still limited. Fungal infections are global socio-economic health and agricultural problems, and current chemical antifungals may induce adverse side-effects in humans and ecosystems. Thus, nanoparticles are discussed as potential novel and sustainable antifungals via the desired nanotoxicity but often fail in practical applications. In our study, we found that nanoparticles' toxicity strongly depends on their binding to fungal spores, including the clinically relevant pathogen

Antifungal AgentsSurface PropertiesBiomedical EngineeringMedizinNanoparticleNanotechnology02 engineering and technology010501 environmental sciencesToxicologyModels Biological01 natural sciencesDrug Resistance FungalAnimalsHumansEcosystem0105 earth and related environmental scienceschemistry.chemical_classificationMicrobial ViabilityBiomoleculeSpores FungalSilicon Dioxide021001 nanoscience & nanotechnologychemistryNanotoxicologyNanoparticlesNanomedicineAdsorptionBotrytis0210 nano-technologyBiologie
researchProduct

Resistance to Nano-Based Antifungals Is Mediated by Biomolecule Coronas.

2018

Fungal infections are a growing global health and agricultural threat, and current chemical antifungals may induce various side-effects. Thus, nanoparticles are investigated as potential novel antifungals. We report that nanoparticles' antifungal activity strongly depends on their binding to fungal spores, focusing on the clinically important fungal pathogen Aspergillus fumigatus as well as common plant pathogens, such as Botrytis cinerea. We show that nanoparticle-spore complex formation was enhanced by the small nanoparticle size rather than the material, shape or charge, and could not be prevented by steric surface modifications. Fungal resistance to metal-based nanoparticles, such as Zn…

Materials scienceAntifungal AgentsMedizinChemieNanoparticleMetal Nanoparticles02 engineering and technologyMoths030226 pharmacology & pharmacyAspergillus fumigatus03 medical and health sciencesMice0302 clinical medicinePulmonary surfactantIn vivoDrug Resistance FungalAnimalsHumansGeneral Materials ScienceBotrytis cinereaPlant Diseaseschemistry.chemical_classificationbiologyBiomoleculeAspergillus fumigatusfungi021001 nanoscience & nanotechnologybiology.organism_classificationGalleria mellonellaDisease Models AnimalchemistryBiophysicsNanomedicineProtein CoronaBotrytisPulmonary Aspergillosis0210 nano-technologyACS applied materialsinterfaces
researchProduct