0000000000521008

AUTHOR

Elmeri Lahtinen

showing 28 related works from this author

Dry chlorination of spent nickel metal hydride battery waste for water leaching of battery metals and rare earth elements

2022

An efficient leaching process was developed for nickel, cobalt, and the rare earth elements (REEs) from spent nickel metal hydride (NiMH) battery waste. The process involves dry chlorination with ammonium chloride in low temperature to produce water-soluble chlorinated compounds, followed by simple water leaching. The factors affecting the conversion and solubilization were studied, including the amount of ammonium chloride, residence time and temperature in dry chlorination, and solid to liquid ratio, time and temperature in water leaching. As a result, the dry chlorination process was found to produce ammonium and chloride containing products, depending on the temperature of the process: …

prosessitkloriditProcess Chemistry and TechnologyNiMHharvinaiset maametallitPollutionakutympäristöystävällisyysdry chlorinationnikkelimetallihydridiakutjätteiden hyötykäyttöliuotusbatteryChemical Engineering (miscellaneous)kobolttinikkeliWaste Management and Disposal
researchProduct

Preconcentration and speciation analysis of mercury : 3D printed metal scavenger-based solid-phase extraction followed by analysis with inductively c…

2021

A selective method for preconcentration and determination of methylmercury (MeHg) and inorganic mercury (iHg) in natural water samples at the ng L−1 level has been developed. The method involves adsorption of Hg species into a 3D printed metal scavenger and sequential elution with acidic thiourea solutions before ICP-MS determination. Experimental parameters affecting the preconcentration of MeHg and iHg such as the sample matrix, effect of the flow rate on adsorption, eluent composition, and elution mode have been studied in detail. The obtained method detection limits, considering the preconcentration factors of 42 and 93, were found to be 0.05 ng L−1 and 0.08 ng L−1 for MeHg and iHg, res…

massaspektrometriamercurySolid Phase ExtractionelohopeaMercury3D printinganalyyttinen kemiaMethylmercury CompoundsvedenlaatuympäristökemiaMass SpectrometryAnalytical ChemistryspeciationInductively coupled plasma mass spectrometrysuodattimetpitoisuusPrinting Three-Dimensionalpreconcentration3D-tulostusnatural waterympäristömyrkytbiosaatavuus
researchProduct

Determination of mercury at picogram level in natural waters with inductively coupled plasma mass spectrometry by using 3D printed metal scavengers

2019

The determination of ultra-trace concentrations of Hg in natural water samples via preconcentration using 3D printed metal scavenger technique followed by inductively coupled plasma mass spectrometry (ICP-MS) was developed. The determination of Hg in certified reference material ERM-CA615 (groundwater) was performed with high accuracy and precision resulting in recovery of 100 ± 3% and RSD <2.5%, respectively. Selective laser sintering (SLS) 3D printing was used to fabricate the scavengers using a mixture of polyamide-12 powder with thiol-functionalized silica. The preconcentration procedure is based on the adsorption of Hg on the scavenger and followed by elution of the preconcentrated Hg …

3d printedmercuryelohopeavesichemistry.chemical_element02 engineering and technology01 natural sciencesBiochemistryAnalytical ChemistryMetalpreconcentration3D-tulostushaitalliset aineetEnvironmental Chemistryinductively coupled plasma mass spectrometryInductively coupled plasma mass spectrometrySpectroscopyvesistötNatural waterultra-trace concentration010401 analytical chemistry3D printing021001 nanoscience & nanotechnology0104 chemical sciencesMercury (element)spektrometriaCertified reference materialschemistryEnvironmental chemistryvisual_artvisual_art.visual_art_mediumnatural water0210 nano-technologyGroundwaterAnalytica Chimica Acta
researchProduct

Three-Dimensional Printing of Nonlinear Optical Lenses.

2018

In the current paper, a series of nonlinear optical (NLO) active devices was prepared by utilizing stereolithographic three-dimensional printing technique. Microcrystalline NLO active component, urea, or potassium dihydrogen phosphate was dispersed in a simple photopolymerizable polyacrylate-based resin and used as the printing material to fabricate highly efficient transparent NLO lenses. The nonlinear activity of the printed lenses was confirmed by second-harmonic generation measurements using a femtosecond laser-pumped optical parametric amplifier operating at a wavelength of 1195 nm. The three-dimensional printing provides a simple method to utilize a range of NLO active compounds witho…

Materials scienceGeneral Chemical Engineeringlinssit (optiikka)Crystal growth010402 general chemistry01 natural sciencesnonlinear optical lensesArticlelcsh:ChemistryNonlinear optical3D-tulostusthree-dimensional printingta216ta116ta114010405 organic chemistrybusiness.industryGeneral ChemistryOptical parametric amplifier0104 chemical sciencesWavelengthNonlinear systemMicrocrystallinelcsh:QD1-999Three dimensional printingFemtosecondOptoelectronicsbusinessACS omega
researchProduct

Considering lithium-ion battery 3D-printing via thermoplastic material extrusion and polymer powder bed fusion

2021

Abstract In this paper, the ability to 3D print lithium-ion batteries through Pmnbspace thermoplastic material extrusion and polymer powder bed fusion is considered. Focused on the formulation of positive electrodes composed of polypropylene, LiFePO4 as active material, and conductive additives, advantages and drawbacks of both additive manufacturing technologies, are thoroughly discussed from the electrochemical, electrical, morphological and mechanical perspectives. Based on these preliminary results, strategies to further optimize the electrochemical performances are proposed. Through a comprehensive modeling study, the enhanced electrochemical suitability at high current densities of va…

chemistry.chemical_classificationBattery (electricity)Polypropylene0209 industrial biotechnologyThermoplasticMaterials sciencebusiness.industryBiomedical Engineering3D printing02 engineering and technology021001 nanoscience & nanotechnologyIndustrial and Manufacturing EngineeringLithium-ion batterychemistry.chemical_compound020901 industrial engineering & automationchemistryElectrodeGeneral Materials ScienceExtrusionComposite material0210 nano-technologybusinessEngineering (miscellaneous)Electrical conductorAdditive Manufacturing
researchProduct

Gold Nanoparticles on 3D-Printed Filters : From Waste to Catalysts

2019

Three-dimensionally printed solid but highly porous polyamide-12 (PA12) plate-like filters were used as selective adsorbents for capturing tetrachloroaurate from acidic solutions and leachates to prepare PA12–Au composite catalysts. The polyamide-adsorbed tetrachloroaurate can be readily reduced to gold nanoparticles by using sodium borohydride, ascorbic acid, hydrogen peroxide, UV light, or by heating. All reduction methods led to polyamide-anchored nanoparticles with an even size distribution and high dispersion. The particle sizes were somewhat dependent on the reduction method, but the average diameters were typically about 20 nm. Particle sizes were determined by using a combination of…

Materials scienceGeneral Chemical EngineeringNanoparticle02 engineering and technology010402 general chemistry01 natural sciencesArticlekultalaw.inventionSodium borohydridechemistry.chemical_compoundAdsorptionlaw3D-tulostusQD1-999General Chemistry021001 nanoscience & nanotechnologyAscorbic acid0104 chemical sciencesChemistrySelective laser sinteringchemistryChemical engineeringColloidal goldgold nanoparticlesParticlenanohiukkaset3D-printed filters0210 nano-technologyDispersion (chemistry)
researchProduct

Selective recovery of gold from electronic waste using 3D-printed scavenger

2017

Around 10% of the worldwide annual production of gold is used for manufacturing of electronic devices. According to the European Commission, waste electric and electronic equipment is the fastest growing waste stream in the European Union. This has generated the need for an effective method to recover gold from electronic waste. Here, we report a simple, effective, and highly selective nylon-12-based three-dimensional (3D)-printed scavenger objects for gold recovery directly from an aqua regia extract of a printed circuit board waste. Using the easy to handle and reusable 3D-printed meshes or columns, gold can be selectively captured both in a batch and continuous flow processes by dipping …

EngineeringGeneral Chemical Engineering3D-printed scavenger3D printing02 engineering and technology01 natural sciencesElectronic wasteColumn (database)kultaArticle12. Responsible consumptionelectronic wastelcsh:ChemistryPrinted circuit boardchemistry.chemical_compoundselective recoverymedia_common.cataloged_instanceAqua regiaElectronicsEuropean unionta116media_commonWaste management010405 organic chemistrybusiness.industryGeneral Chemistrygold021001 nanoscience & nanotechnologyScavenger (chemistry)0104 chemical scienceslcsh:QD1-999chemistry0210 nano-technologybusinessACS Omega
researchProduct

Nonlinear optical properties of diaromatic stilbene, butadiene and thiophene derivatives

2021

Series of highly polar stilbene (1a–e), diphenylbutadiene (2a–c) and phenylethenylthiophene (3a–c) derivatives were prepared via Horner–Wadsworth–Emmons method with a view to produce new and efficient materials for second harmonic generation (SHG) in the solid-state. The single-crystal X-ray structures of compounds 1–3 reveal extensive polymorphism and a peculiar photodimerization of the 2-chloro-3,4-dimethoxy-4′-nitrostilbene derivative 1a to afford two polymorphs of tetra-aryl cyclobutane 4. The stilbene congeners 2-chloro-3,4-dimethoxy-4′-nitrostilbene (1a·non-centro), 5-bromo-2-hydroxy-3-nitro-4′-nitrostilbene (1b) and 4-dimethylamino-4′-nitrostilbene (1e), as well as 4′-fluoro-4′′-nitr…

aromaattiset yhdisteet010405 organic chemistrySecond-harmonic generationbutadieeniGeneral ChemistryConjugated systemChromophoreoptiset ominaisuudetkiteet010402 general chemistry01 natural sciencesFluorescenceCatalysis0104 chemical sciencesCyclobutaneCrystallographychemistry.chemical_compoundNonlinear opticalPolymorphism (materials science)chemistrystilbeenitMaterials ChemistryUreaorgaaniset yhdisteetNew Journal of Chemistry
researchProduct

Fabrication of Porous Hydrogenation Catalysts by a Selective Laser Sintering 3D Printing Technique

2019

Open in a separate window Three-dimensional selective laser sintering printing was utilized to produce porous, solid objects, in which the catalytically active component, Pd/SiO2, is attached to an easily printable supporting polypropylene framework. Physical properties of the printed objects, such as porosity, were controlled by varying the printing parameters. Structural characterization of the objects was performed by helium ion microscopy, scanning electron microscopy, and X-ray tomography, and the catalytic performance of the objects was tested in the hydrogenation of styrene, cyclohexene, and phenylacetylene. The results show that the selective laser sintering process provides an alte…

FabricationMaterials sciencelaser sintering printingGeneral Chemical EngineeringCyclohexene3D printingfabrication02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyArticleCatalysislaw.inventionlcsh:Chemistryhuokoisuuschemistry.chemical_compoundkatalyytitlaw3D-tulostushydrogenation catalystsPorosityPolypropylenebusiness.industry3D printingGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCharacterization (materials science)Selective laser sinteringchemistryChemical engineeringlcsh:QD1-9990210 nano-technologybusinessACS Omega
researchProduct

3D Printed Palladium Catalyst for Suzuki-Miyaura Cross-coupling Reactions

2020

Selective laser sintering (SLS) 3d printing was utilized to manufacture a solid catalyst for Suzuki-Miyaura cross-coupling reactions from polypropylene as a base material and palladium nanoparticles on silica (SilicaCat Pd(0)R815-100 by SiliCycle) as the catalytically active additive. The 3d printed catalyst showed similar activity to that of the pristine powdery commercial catalyst, but with improved practical recoverability and reduced leaching of palladium into solution. Recycling of the printed catalyst led to increase of the induction period of the reactions, attributed to the pseudo-homogeneous catalysis. The reaction is initiated by oxidative addition of aryl iodide to palladium nano…

3d printedMaterials scienceNANOPARTICLE116 Chemical sciences3D printingNanoparticle010402 general chemistry01 natural sciencesCatalysisCoupling reactionlaw.inventionInorganic ChemistrykatalyytitlawMIZOROKI-HECK3D-tulostuspalladium nanoparticlesselective laser sinteringPhysical and Theoretical ChemistryFILTERSSuzuki-Miyaura cross-couplingcatalysis010405 organic chemistrybusiness.industry3d printingOrganic ChemistryPINCER COMPLEXESPalladium nanoparticlespalladium0104 chemical sciencesSelective laser sinteringChemical engineeringnanohiukkaset221 Nano-technologybusinessPalladium catalyst
researchProduct

Porous 3D Printed Scavenger Filters for Selective Recovery of Precious Metals from Electronic Waste

2018

Selective laser sintering (SLS) 3D printing is used to fabricate highly macroporous ion scavenger filters for recovery of Pd and Pt from electronic waste. The scavengers are printed by using a mixture of polypropylene with 10 wt% of type‐1 anion exchange resin. Porosities and the flow‐through properties of the filters are controlled by adjusting the SLS printing parameters. The cylinder‐shaped filters are used in selective recovery of Pd and Pt from acidic leachate of electronic waste simply by passing the solution through the object. Under such conditions, the scavenger filters are able to capture Pd and Pt as anionic complexes with high efficiency from a solution containing mixture of dif…

3d printedMaterials science3D printing02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyElectronic wastelaw.inventionelectronic wastejalometallitsuodattimetlaw3D-tulostusmetallitPorosityta116General Environmental SciencesintrausRenewable Energy Sustainability and the Environmentbusiness.industryprecious metals021001 nanoscience & nanotechnologyporous 3D printed scavenger filtersScavenger (chemistry)0104 chemical sciencesSelective laser sinteringChemical engineeringtalteenottoSelektiivinen lasersintraus (SLS)sähkö- ja elektroniikkaromu0210 nano-technologybusiness
researchProduct

Selective Laser Sintering of Metal-Organic Frameworks: Production of Highly Porous Filters by 3D Printing onto a Polymeric Matrix.

2019

Metal‐organic frameworks (MOFs) have raised a lot of interest, especially as adsorbing materials, because of their unique and well‐defined pore structures. One of the main challenges in the utilization of MOFs is their crystalline and powdery nature, which makes their use inconvenient in practice. Three‐dimensional printing has been suggested as a potential solution to overcome this problem. We used selective laser sintering (SLS) to print highly porous flow‐through filters containing the MOF copper(II) benzene‐1,3,5‐tricarboxylate (HKUST‐1). These filters were printed simply by mixing HKUST‐1 with an easily printable nylon‐12 polymer matrix. By using the SLS, powdery particles were fused t…

porosityMaterials sciencematerials sciencelaser sinteringMixing (process engineering)3D printingNanotechnologyorganometalliyhdisteet010402 general chemistry01 natural scienceslaw.inventionMatrix (chemical analysis)huokoisuusAdsorptionlaw3D-tulostuspolymeeritmateriaalitiedePorosityta116metal-organic frameworkspolymerschemistry.chemical_classification010405 organic chemistrybusiness.industryGeneral ChemistryPolymer0104 chemical sciencesSelective laser sinteringchemistryadsorptionMetal-organic frameworkadsorptiobusinessChemPlusChem
researchProduct

Preparation of Highly Porous Carbonous Electrodes by Selective Laser Sintering

2019

Selective laser sintering (SLS) 3D printing was utilized to fabricate highly porous carbonous electrodes. The electrodes were prepared by using a mixture of fine graphite powder and either polyamide-12, polystyrene, or polyurethane polymer powder as SLS printing material. During the printing process the graphite powder was dispersed uniformly on the supporting polymer matrix. Graphite’s concentration in the mixture was varied between 5 and 40 wt % to find the correlation between the carbon content and conductivity. The graphite concentration, polymer matrix, and printing conditions all had an impact on the final conductivity. Due to the SLS printing technique, all the 3D printed electrodes …

Materials sciencelaser sinteringelektroditEnergy Engineering and Power Technology3D printing02 engineering and technologyConductivity010402 general chemistry01 natural scienceslaw.inventionlawHighly porousgrafiittiMaterials ChemistryElectrochemistryChemical Engineering (miscellaneous)3D-tulostusGraphiteElectrical and Electronic EngineeringComposite materialta116ta114business.industrygraphite3D printingporous electrodes021001 nanoscience & nanotechnology0104 chemical sciencesSelective laser sinteringPorous electrodeElectrodePolyamideconductivity0210 nano-technologybusinessACS Applied Energy Materials
researchProduct

Jalometallit ja niiden talteenotto

2016

Tämän pro gradu -tutkielman kirjallisessa osassa käsitellään jalometallien ominaisuuksia ja esiintyvyyttä. Myös jalometallien yleisimpiä yhdisteitä ja käyttökohteita teollisuudessa selvitetään. Jalometallien talteenottomenetelmistä esitellään varsinkin klassiset saostusmenetelmät, neste-nesteuutto ja ioninvaihto. Näistä painotetaan ioninvaihtomenetelmien esittelyä, sillä tutkielman kokeellisessa osassa tutkittiin jalometallien talteenottoa ioninvaihdolla. Kirjallisessa osassa esitellään myös lyhyesti induktiivisesti kytketyn plasma-emissiospektrometrin (ICP-OES) rakennetta ja käyttöä. Tutkielman kokeellisessa osassa tutkittiin jalometallien talteenottoa synteettisestä uuttoliuoksesta, hyödy…

jalometallitioninvaihtomateriaalittalteenottoplatinametallit
researchProduct

Considering lithium-ion battery 3D-printing via thermoplastic material extrusion and polymer powder bed fusion

2021

In this paper, the ability to 3D print lithium-ion batteries through thermoplastic material extrusion and polymer powder bed fusion is considered. Focused on the formulation of positive electrodes composed of polypropylene, LiFePO4 as active material, and conductive additives, advantages and drawbacks of both additive manufacturing technologies, are thoroughly discussed from the electrochemical, electrical, morphological and mechanical perspectives. Based on these preliminary results, strategies to further optimize the electrochemical performances are proposed. Through a comprehensive modeling study, the enhanced electrochemical suitability at high current densities of various complex three…

suorituskykymaterial extrusionpowder bed fusionLithium-ion batteryelektroditlitiumioniakut3D-tulostusmateriaalitvalmistustekniikkacompositeskomposiititsähkökemiaelectrodes
researchProduct

CCDC 2058508: Experimental Crystal Structure Determination

2021

Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters2-chloro-34-dimethoxy-1-[2-(4-nitrophenyl)ethenyl]benzeneExperimental 3D Coordinates
researchProduct

CCDC 2058507: Experimental Crystal Structure Determination

2021

Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters2-chloro-34-dimethoxy-1-[2-(4-nitrophenyl)ethenyl]benzeneExperimental 3D Coordinates
researchProduct

CCDC 2058513: Experimental Crystal Structure Determination

2021

Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E

Space GroupCrystallography1-fluoro-4-[4-(4-nitrophenyl)buta-13-dien-1-yl]benzeneCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2058519: Experimental Crystal Structure Determination

2021

Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E

Space GroupCrystallography11'-[24-bis(2-chloro-34-dimethoxyphenyl)cyclobutane-13-diyl]bis(4-nitrobenzene)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2058512: Experimental Crystal Structure Determination

2021

Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersNN-dimethyl-4-[2-(4-nitrophenyl)ethenyl]anilineExperimental 3D Coordinates
researchProduct

CCDC 2058515: Experimental Crystal Structure Determination

2021

Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E

Space GroupCrystallographyCrystal System4-bromo-2-[2-(4-nitrophenyl)ethenyl]thiopheneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2058511: Experimental Crystal Structure Determination

2021

Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E

Space GroupCrystallography1-methoxy-4-[2-(4-nitrophenyl)ethenyl]benzeneCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2058516: Experimental Crystal Structure Determination

2021

Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E

Space GroupCrystallographyCrystal System2-methyl-5-[2-(4-nitrophenyl)ethenyl]thiopheneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2058518: Experimental Crystal Structure Determination

2021

Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E

Space GroupCrystallography11'-[24-bis(2-chloro-34-dimethoxyphenyl)cyclobutane-13-diyl]bis(4-nitrobenzene)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2058509: Experimental Crystal Structure Determination

2021

Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates4-bromo-2-nitro-6-[2-(4-nitrophenyl)ethenyl]phenol
researchProduct

CCDC 2058514: Experimental Crystal Structure Determination

2021

Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E

Space GroupCrystallographyCrystal System4-bromo-2-[2-(4-nitrophenyl)ethenyl]thiopheneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2058517: Experimental Crystal Structure Determination

2021

Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E

Space GroupCrystallographyCrystal SystemCrystal Structure2-(methylsulfanyl)-5-[2-(4-nitrophenyl)ethenyl]thiopheneCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2058510: Experimental Crystal Structure Determination

2021

Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters12-dimethoxy-4-[2-(4-nitrophenyl)ethenyl]benzeneExperimental 3D Coordinates
researchProduct