0000000000522203

AUTHOR

Aymeric Vecchiola

showing 7 related works from this author

Path to Overcome Material and Fundamental Obstacles in Spin Valves Based on Mo S 2 and Other Transition-Metal Dichalcogenides

2019

International audience; Experimental studies on spin valves with exfoliated 2D materials face the main technological issue of ferromagnetic electrode oxidation during the 2Ds integration process. As a twofold outcome, magne-toresistance (MR) signals are very difficult to obtain and, when they finally are, they are often far from expectations. We propose a fabrication method to circumvent this key issue for 2D-based spintronics devices. We report on the fabrication of NiFe/MoS 2 /Co spin valves with mechanically exfoliated mul-tilayer MoS 2 using an in situ fabrication protocol that allows high-quality nonoxidized interfaces to be maintained between the ferromagnetic electrodes and the 2D la…

[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Physical Review Applied
researchProduct

Path to Overcome Material and Fundamental Obstacles in Spin Valves Based on MoS2 and Other Transition-Metal Dichalcogenides

2019

Experimental studies on spin valves with exfoliated 2D materials face the main technological issue of ferromagnetic electrode oxidation during the 2Ds integration process. As a twofold outcome, magnetoresistance (MR) signals are very difficult to obtain and, when they finally are, they are often far from expectations. We propose a fabrication method to circumvent this key issue for 2D-based spintronics devices. We report on the fabrication of NiFe/MoS2/Co spin valves with mechanically exfoliated multilayer MoS2 using an in situ fabrication protocol that allows high-quality nonoxidized interfaces to be maintained between the ferromagnetic electrodes and the 2D layer. Devices display a large …

NanotecnologiaFísicaMetalls de transició
researchProduct

Very Long Term Stabilization of a 2D Magnet down to the Monolayer for Device Integration

2020

2D materials have recently demonstrated a strong potential for spintronic applications. This has been further reinforced by the discovery of ferromagnetic 2D layers. Nevertheless, the fragility of ...

010302 applied physics[PHYS]Physics [physics]Materials scienceSpintronicsNanotechnology02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsTerm (time)FragilityFerromagnetismMagnet0103 physical sciencesMonolayerMaterials ChemistryElectrochemistry[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]0210 nano-technologyComputingMilieux_MISCELLANEOUS
researchProduct

Wide range local resistance imaging on fragile materials by conducting probe atomic force microscopy in intermittent contact mode

2016

International audience; An imaging technique associating a slowly intermittent contact mode of atomic force microscopy (AFM) with a home-made multi-purpose resistance sensing device is presented. It aims at extending the widespread resistance measurements classically operated in contact mode AFM to broaden their application fields to soft materials (molecular electronics, biology) and fragile or weakly anchored nano-objects, for which nanoscale electrical characterization is highly demanded and often proves to be a challenging task in contact mode. Compared with the state of the art concerning less aggressive solutions for AFM electrical imaging, our technique brings a significantly wider r…

Materials scienceNanostructurePhysics and Astronomy (miscellaneous)optimisationNanotechnology02 engineering and technologyPhotovoltaic effectCarbon nanotube010402 general chemistry7. Clean energy01 natural scienceselectric resistance measurementlaw.inventioninfrared detectorslawMicroscopyThin filmNanoscopic scalethin film sensorsatomic force microscopycarbon nanotubesMolecular electronicsself-assembly[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCharacterization (materials science)monolayersphotodetectors0210 nano-technology
researchProduct

A Local Study of the Transport Mechanisms in MoS2 Layers for Magnetic Tunnel Junctions

2018

MoS2-based vertical spintronic devices have attracted an increasing interest thanks to theoretical predictions of large magnetoresistance signals. However, experimental performances are still far from expectations. Here, we carry out the local electrical characterization of thin MoS2 flakes in a Co/Al2O3/MoS2 structure through conductive tip AFM measurements. We show that thin MoS2 presents a metallic behavior with a strong lateral transport contribution that hinders the direct tunnelling through thin layers. Indeed, no resistance dependence is observed with the flake thickness. These findings reveal a spin depolarization source in the MoS2-based spin valves, thus pointing to possible solut…

010302 applied physics[PHYS]Physics [physics]Thin layersMaterials scienceCondensed matter physicsMagnetoresistanceSpintronics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesLocal studyCharacterization (materials science)0103 physical sciencesGeneral Materials Science[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]0210 nano-technologyElectrical conductorQuantum tunnellingComputingMilieux_MISCELLANEOUSSpin-½
researchProduct

Path to Overcome Material and Fundamental Obstacles in Spin Valves Based on MoS2 and Other Transition-Metal Dichalcogenides

2019

The recent introduction of two-dimensional materials into magnetic tunnel junctions (2D MTJs) offers very promising properties for spintronics, such as atomically defined interfaces, spin filtering, perpendicular anisotropy, and modulation of spin-orbit torque. Nevertheless, the difficulty of integrating exfoliated 2D materials into spintronic devices has limited exploration. Here the authors find a fabrication process leading to superior performance in MTJs based on transition-metal dichalcogenides, and further suggest a path to alleviate basic issues of technology and physics for 2D MTJs.

Spin filteringMaterials scienceFabricationSpintronicsGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesEngineering physicsTransition metalModulation0103 physical sciencesPath (graph theory)Perpendicular anisotropy010306 general physics0210 nano-technologySpin-½Physical Review Applied
researchProduct

WS2 2D Semiconductor Down to Monolayers by Pulsed-Laser Deposition for Large-Scale Integration in Electronics and Spintronics Circuits

2020

International audience; We report on the achievement of a large-scale tungsten disulfide (WS2) 2D semiconducting platform derived by pulsed-laser deposition (PLD) on both insulating substrates (SrTiO3), as required for in-plane semiconductor circuit definition, and ferromagnetic spin sources (Ni), as required for spintronics applications. We show thickness and phase control, with highly homogeneous wafer-scale monolayers observed under certain conditions, as demonstrated by X-ray photoelectron spectroscopy and Raman spectroscopy mappings. Interestingly, growth appears to be dependent on the substrate selection, with a dramatically increased growth rate on Ni substrates. We show that this 2D…

Materials scienceTungsten disulfideWS202 engineering and technology010402 general chemistry01 natural sciencesPulsed laser depositionchemistry.chemical_compoundMonolayerDeposition (phase transition)General Materials ScienceElectronics2D semiconductorsElectronic circuitspintronicsSpintronicsbusiness.industryNanotecnologia021001 nanoscience & nanotechnologypulsed-laser deposition[SPI.TRON]Engineering Sciences [physics]/Electronics0104 chemical sciencesEspectroscòpia RamanSemiconductorchemistrySemiconductorsRaman spectroscopy[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]OptoelectronicsX-ray photoemission spectroscopy0210 nano-technologybusiness
researchProduct