0000000000522938
AUTHOR
Mikhail I. Yavor
Energy and range focusing of in-flight separated exotic nuclei – A study for the energy-buncher stage of the low-energy branch of the Super-FRS
Abstract The relative momentum spread of in-flight separated exotic nuclear beams produced in fragmentation and/or fission reactions is of the order of a few percent. A new technique is presented, which reduces the momentum spread significantly, and first experimental results obtained with relativistic projectile fragments are shown. This technique is the key to experiments with slowed-down and stopped beams, in particular for the efficient stopping of relativistic exotic nuclei in gas-filled stopping cells. It will be employed at the energy-buncher stage of the low-energy branch of the Super-FRS facility. The ion-optical design of the energy buncher is presented and a brief outlook to the …
The FRS Ion Catcher
At the FRS Ion Catcher at GSI, projectile and fission fragments are produced at relativistic energies, separated in-flight, range-focused, slowed down and thermalized in a cryogenic stopping cell. A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) is used to perform direct mass measurements and to provide an isobarically clean beam for further experiments, such as mass-selected decay spectroscopy. A versatile RF quadrupole transport and diagnostics unit guides the ions from the stopping cell to the MR-TOF-MS, provides differential pumping, ion identification and includes reference ion sources. The FRS Ion Catcher serves as a test facility for the Low-Energy Branch of the Sup…
Dawning of the N=32 shell closure seen through precision mass measurements of neutron-rich titanium isotopes
A precision mass investigation of the neutron-rich titanium isotopes 51 − 55 Ti was performed at TRIUMF’s Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N = 32 shell closure, and the overall uncertainties of the 52 − 55 Ti mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N = 32 , narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N = 32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements a…
High-power production targets for the Super-FRS using a fast extraction scheme
Abstract The high-power production target of the Super-FRS [H. Geissel et al., these Proceedings] will be irradiated by very intense heavy-ion beams which will be delivered from the future SIS100/200 [An International Accelerator Facility for Beams of Ions and Antiprotons, GSI-Report, 2001] synchrotron facility at the Gesellschaft fur Schwerionenforschung (GSI) Darmstadt. This paper presents calculations of the thermodynamic and the hydrodynamic response of such a target, considering that a uranium ion beam with an energy of 1 GeV/u and an intensity of 10 12 particles will impinge within 50 ns on a solid carbon target with a thickness of 4 g/cm 2 . Due to the high beam intensity the target …
First experimental results of a cryogenic stopping cell with short-lived, heavy uranium fragments produced at 1000 MeV/u
A cryogenic stopping cell (CSC) has been commissioned with U-238 projectile fragments produced at 1000 MeV/u. The spatial isotopic separation in flight was performed with the FRS applying a monoenergetic degrader. For the first time, a stopping cell was operated with exotic nuclei at cryogenic temperatures (70 to 100K). A helium stopping gas density of up to 0.05mg/cm(3) was used, about two times higher than reached before for a stopping cell with RF ion repelling structures. An overall efficiency of up to 15%, a combined ion survival and extraction efficiency of about 50%, and extraction times of 24ms were achieved for heavy a-decaying uranium fragments. Mass spectrometry with a multiple-r…
The Super-FRS Project at GSI
The GSI projectile fragment separator FRS has demonstrated with many pioneering experiments the research potential of in-flight separators at relativistic energies. Although the present facility has contributed much to the progress in the field of nuclear structure physics, major improvements are desirable in the future. The characteristics of the proposed next-generation facility at GSI, the Super-FRS, will be presented and compared to other projects. The Super-FRS is a large-acceptance superconducting fragment separator followed by different experimental branches including a combination with a new storage-cooler ring system. This system consists of a collector ring (CR) and a new experime…
The science case of the FRS Ion Catcher for FAIR Phase-0
The FRS Ion Catcher at GSI enables precision experiments with thermalized projectile and fission fragments. At the same time it serves as a test facility for the Low-Energy Branch of the Super-FRS at FAIR. The FRS Ion Catcher has been commissioned and its performance has been characterized in five experiments with 238U and 124Xe projectile and fission fragments produced at energies in the range from 300 to 1000 MeV/u. High and almost element-independent efficiencies for the thermalization of short-lived nuclides produced at relativistic energies have been obtained. High-accuracy mass measurements of more than 30 projectile and fission fragments have been performed with a multiple-reflection…
Ion-optical layout of a powerful next-generation pre-separator for in-flight separation of relativistic rare isotopes
Abstract Rare isotope beams can be efficiently produced at relativistic energies via projectile fragmentation and projectile fission. Magnetic rigidity analysis in combination with atomic energy loss ( Bρ –Δ E – Bρ method) in profiled matter placed at dispersive focal planes represents the tool for spatial separation in flight. The next-generation in-flight separators at high energies will consist of multiple degrader stages to provide intense monoisotopic fragment beams of all elements up to uranium. The pre-separator layout with the first degrader system holds many technical challenges, e.g. to handle the high-power primary beams characterized by a large range in time structure, from a DC…
Mass measurements of As, Se, and Br nuclei, and their implication on the proton-neutron interaction strength toward the N=Z line
Mass measurements of the $^{69}$As, $^{70,71}$Se and $^{71}$Br isotopes, produced via fragmentation of a $^{124}$Xe primary beam at the FRS at GSI, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the FRS Ion Catcher with an unprecedented mass resolving power of almost 1,000,000. For the $^{69}$As isotope, this is the first direct mass measurement. A mass uncertainty of 22 keV was achieved with only 10 events. For the $^{70}$Se isotope, a mass uncertainty of 2.6 keV was obtained, corresponding to a relative accuracy of $\delta$m/m = 4.0$\times 10^{-8}$, with less than 500 events. The masses of the $^{71}$Se and $^{71}$Br isotopes were measured…
High-resolution, accurate multiple-reflection time-of-flight mass spectrometry for short-lived, exotic nuclei of a few events in their ground and low-lying isomeric states
Physical review / C covering nuclear physics 99(6), 064313 (2019). doi:10.1103/PhysRevC.99.064313