0000000000524566
AUTHOR
Ichiko Saotome
β-Catenin Activation Regulates Tissue Growth Non–Cell Autonomously in the Hair Stem Cell Niche
Coordinated Hair Growth Wnt/β-catenin signaling is a key pathway that plays a conserved role in regulating stem cell function during adult tissue regeneration. Using time-lapse imaging of live mice, Deschene et al. (p. 1353 ) show that genetic activation of β-catenin within hair follicle stem cells generates axes of hair growth by coordinated cell divisions and cell movements, even when the normal niches—the dermal papillae—are laser-ablated. Activated β-catenin enhances Wnt ligand secretion, and these ligands can then activate Wnt signaling in adjacent cells that do not have activated β-catenin, indicating how activated stem cells could influence neighboring cells during normal growth and …
Spontaneous tumour regression in keratoacanthomas is driven by Wnt/retinoic acid signalling cross-talk
A fundamental goal in cancer biology is to identify the cells and signalling pathways that are keys to induce tumour regression. Here we use a spontaneously self-regressing tumour, cutaneous keratoacanthoma (KAs), to identify physiological mechanisms that drive tumour regression. By using a mouse model system that recapitulates the behaviour of human KAs, we show that self-regressing tumours shift their balance to a differentiation programme during regression. Furthermore, we demonstrate that developmental programs utilized for skin hair follicle regeneration, such as Wnt, are hijacked to sustain tumour growth and that the retinoic acid (RA) signalling pathway promotes tumour regression by …
Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration
Tissue development and regeneration depend on cell-cell interactions and signals that target stem cells and their immediate progeny. However, the cellular behaviours that lead to a properly regenerated tissue are not well understood. Using a new, non-invasive, intravital two-photon imaging approach we study physiological hair-follicle regeneration over time in live mice. By these means we have monitored the behaviour of epithelial stem cells and their progeny during physiological hair regeneration and addressed how the mesenchyme influences their behaviour. Consistent with earlier studies, stem cells are quiescent during the initial stages of hair regeneration, whereas the progeny are more …