0000000000524757
AUTHOR
Ulli Köster
Atomic transitions and the first ionization potential of promethium determined by laser spectroscopy
The atomic spectrum of neutral promethium has been studied extensively by laser resonance ionization spectroscopy. We report on more than 1000 atomic transitions in the blue and near infrared spectral ranges, most of them between high excited energy levels. As Rydberg convergences could not be assigned unambiguously in the dense spectrum at high excitation energies, the first ionization potential (IP) was determined via field ionization of weakly bound states within a static electric field. By applying the saddle-point model, a value of IP ( Pm ) = 45 020.8 ( 3 ) cm − 1 [ 5.58188 ( 4 ) eV ] was derived, which confirms previous expectations of 45 027 ( 80 ) and 44 985 ( 140 ) cm − 1 , which …
The neutron-rich Mg isotopes: first results from MINIBALL at REX-ISOLDE
After the successful commissioning of the Radioactive beam EXperiment (REX) at ISOLDE (CERN) in 2002, first physics experiments were performed in 2003 which focussed on the neutron-rich Mg isotopes in the vicinity of the “island of inversion”. After introducing the REX facility and the modern γ spectrometer MINIBALL first preliminary results will be presented showing the high potential and physics opportunities offered by this new radioactive beam facility.
Beta decay of neutron-rich cobalt and nickel isotopes
We report on the first β-γ spectroscopy measurements of the neutron-rich 68–70Co and 70–74Ni nuclei, produced in proton-induced fission of 238U and ionized in a laser ion guide coupled to an on-line mass separator. Several γ lines from the decay of these nuclei have been identified, half-lives determined and production cross sections deduced. The derived level schemes for the copper and nickel isotopes show that the occupation of the ν(1g9/2) state has a strong influence on the structure of these neutron-rich nuclei. This may have a clear impact on the predicted structure and decay properties of doubly-magic 78Ni.
Production, isolation and characterization of radiochemically pure 163Ho samples for the ECHo-project
Abstract Several experiments on the study of the electron neutrino mass are based on high-statistics measurements of the energy spectrum following electron capture of the radionuclide 163Ho. They rely on the availability of large, radiochemically pure samples of 163Ho. Here, we describe the production, separation, characterization, and sample production within the Electron Capture in Holmium-163 (ECHo) project. 163Ho has been produced by thermal neutron activation of enriched, prepurified 162Er targets in the high flux reactor of the Institut Laue-Langevin, Grenoble, France, in irradiations lasting up to 54 days. Irradiated targets were chemically processed by means of extraction chromatogr…
New information on β-delayed neutron emission from Be-12, Be-14
17 pages, 3 tables, 5 figures, 1 appendix.-- PACS nrs.: 23.40.Hc; 27.20.+n.
Aza-BODIPY: A New Vector for Enhanced Theranostic Boron Neutron Capture Therapy Applications
Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on the nuclear capture of slow neutrons by stable 10B atoms followed by charged particle emission that inducing extensive damage on a very localized level (<
Early onset of deformation in the neutron-deficient polonium isotopes
In-source laser spectroscopy has been performed at CERN-ISOLDE with the RILIS laser ion source on Po-191-204,Po-206,Po-208-211,Po-216,Po-218. New information on the beta decay of Po-199 were extracted in the process, challenging previous results. Large-scale atomic calculations were performed to extract the changes in the mean-square charge radius delta from the isotope shifts. The delta for the even-A isotopes reveal a large deviation from the spherical droplet model for N < 116.
Recent Exploits of the ISOLTRAP Mass Spectrometer
Abstract The Penning-trap mass spectrometer ISOLTRAP, located at the isotope-separator facility ISOLDE (CERN), is presented in its current form taking into account technical developments since 2007. Three areas of developments are presented. The reference ion sources have been modified to guarantee a sufficient supply of reference ions for mass measurements and systematic studies. Different excitation schemes have been investigated for manipulation of the ion motion in the Penning trap, to enhance either the purification or measurement process. A multi-reflection time-of-flight mass separator has been implemented and can now be routinely used for purification and as a versatile tool for bea…
New developments of the in-source spectroscopy method at RILIS/ISOLDE
At the CERN ISOLDE facility, long isotope chains of many elements are produced by proton-induced reactions in target materials such as uranium carbide. The Resonance Ionization Laser Ion Source (RILIS) is an efficient and selective means of ionizing the reaction products to produce an ion beam of a chosen isotope. Coupling the RILIS with modern ion detection techniques enables highly sensitive studies of nuclear properties (spins, electromagnetic moments and charge radii) along an isotope chain, provided that the isotope shifts and hyperfine structure splitting of the atomic transitions can be resolved. At ISOLDE the campaign to measure the systematics of isotopes in the lead region (Pb, Bi…
Off-line separation of reactor produced $^{169}$Er for medical applications
Neodymium-140 DOTA-LM3: Evaluation of an In Vivo Generator for PET with a Non-Internalizing Vector
140Nd (t1/2 = 3.4 days), owing to its short-lived positron emitting daughter 140Pr (t1/2 = 3.4 min), has promise as an in vivo generator for positron emission tomography (PET). However, the electron capture decay of 140Nd is chemically disruptive to macrocycle-based radiolabeling, meaning that an in vivo redistribution of the daughter 140Pr is expected before positron emission. The purpose of this study was to determine how the delayed positron from the de-labeled 140Pr affects preclinical imaging with 140Nd. To explore the effect, 140Nd was produced at CERN-ISOLDE, reacted with the somatostatin analogue, DOTA-LM3 (1,4,7,10- tetraazacyclododecane, 1,4,7- tri acetic acid, 10- acetamide N - p…
Selective laser ionization of N≥82 indium isotopes: The new r-process nuclide 135In
Production yields and beta-decay half-lives of very neutron-rich indium isotopes were determined at CERN/ISOLDE using isobaric selectivity of a resonance-ionization laser ion-source. Beta-delayed neutron multiscaling measurements have yielded improved half-lives for 206(6)~ms $^{132}$In, 165(3)~ms $^{133}$In and 141(5)~ms $^{134}$In. With 92(10)~ms $^{135}$In, a new r-process nuclide has been identified which acts as an important `waiting-point' in the In isotopic chain for neutron densities in the range n$_n \simeq 10^{24}$--10$^{26}$ n/cm$^3$, where the r-matter flow has already passed the ${\rm A} \simeq 130$ abundance-peak region.
Nuclear Spins and Magnetic Moments ofCu71,73,75: Inversion ofπ2p3/2andπ1f5/2Levels inCu75
We report the first confirmation of the predicted inversion between the pi2p3/2 and pi1f5/2 nuclear states in the nu(g)9/2 midshell. This was achieved at the ISOLDE facility, by using a combination of in-source laser spectroscopy and collinear laser spectroscopy on the ground states of 71,73,75Cu, which measured the nuclear spin and magnetic moments. The obtained values are mu(71Cu)=+2.2747(8)mu(N), mu(73Cu)=+1.7426(8)mu(N), and mu(75Cu)=+1.0062(13)mu(N) corresponding to spins I=3/2 for 71,73Cu and I=5/2 for 75Cu. The results are in fair agreement with large-scale shell-model calculations.
β-delayed fission andαdecay ofAt196
A nuclear-decay spectroscopy study of the neutron-deficient isotope $^{196}\mathrm{At}$ is reported where an isotopically pure beam was produced using the selective Resonance Ionization Laser Ion Source and On-Line Isotope Mass Separator (CERN). The fine-structure $\ensuremath{\alpha}$ decay of $^{196}\mathrm{At}$ allowed the low-energy excited states in the daughter nucleus $^{192}\mathrm{Bi}$ to be investigated. A $\ensuremath{\beta}$-delayed fission study of $^{196}\mathrm{At}$ was also performed. A mixture of symmetric and asymmetric fission-fragment mass distributions of the daughter isotope $^{196}\mathrm{Po}$ (populated by $\ensuremath{\beta}$ decay of $^{196}\mathrm{At}$) was deduce…
Migration kinetics of ion-implanted beryllium in glassy carbon
Abstract Migration kinetics of low-concentration implanted 7 Be in glassy carbon has been studied by the modified radiotracer technique at temperatures 1285 °C and 1340 °C. The annealed sample concentration profiles show two distinctive components: (i) Main profile broadening assigned to beryllium trapping in defects during annealing. (ii) Tail parts on both sides of the profile maximum related to faster migration. Of the latter the profile representing bulk diffusion lies on the region free of defect influence and is well described by concentration-independent diffusivity. The features of the concentration profile broadening towards the sample surface indicate partial Be trapping in defect…
Concept of a high-resolution online mass separator for the Munich fission fragment accelerator
A fission fragment accelerator combined with the Munich high-flux reactor FRM-II is under design for the delivery of intense beams of mass separated very neutron-rich fission fragments with energies at the Coulomb barrier They can be used to produce very heavy neutron-rich nuclei in fusion reactions. The large neutron excess will result in much longer lifetimes of the produced heavy elements, compared to neutron-deficient ones produced in reactions with stable nuclear beams. Thus fast a-chains can no longer be used to identify the heavy reaction products. A new separator will be used consisting of a velocity filter, an ion guide system (IGISOL) and a Penning trap. The velocity filter separa…
The electron affinity of astatine
One of the most important properties influencing the chemical behavior of an element is the electron affinity (EA). Among the remaining elements with unknown EA is astatine, where one of its isotopes, 211At, is remarkably well suited for targeted radionuclide therapy of cancer. With the At− anion being involved in many aspects of current astatine labeling protocols, the knowledge of the electron affinity of this element is of prime importance. Here we report the measured value of the EA of astatine to be 2.41578(7) eV. This result is compared to state-of-the-art relativistic quantum mechanical calculations that incorporate both the Breit and the quantum electrodynamics (QED) corrections and…
Resonant laser ionization of polonium at rilis-isolde for the study of ground- and isomer-state properties
Three new ionization schemes for polonium have been tested with the resonant ionization laser ion source (RILIS) during the on-line production of 196Po in a UCx target at ISOLDE. The saturation of the atomic transitions has been observed and the yields of the isotope chain 193–198,200,202,204Po have been measured. This development provides the necessary groundwork for performing in-source resonant ionization spectroscopy on the neutron-deficient polonium isotopes (Z = 84). ispartof: Nuclear Instruments & Methods in Physics Research B vol:266 issue:19 pages:4403-4406 ispartof: location:FRANCE, Deauville status: published
Very high specific activity erbium 169Er production for potential receptor-targeted radiotherapy
Erbium 169Er is one of the most interesting radiolanthanides for new potential receptor-targeted β− therapy applications due to its low energy β− emissions, very low intensity ɣ rays and the possibility to use 68Ga or 44Sc as companion for diagnostic in a theranostics approach. Currently it can be produced in reactors through the neutron activation of highly enriched 168Er. The low specific activity of the produced carrier-added 169Er is limiting its use for receptor-targeted therapy. Nonetheless it is used for radiosynoviorthesis of small joints. The aim of this work is to develop a new large-scale production method for the supply of very high specific activity 169Er. Highly enriched 168Er…
β-decay of22O
A mass-separated 12 C 22 O molecular ion beam from the ISOLDE facility was used to study the decay of neutron-rich 22 O. The experimental results were compared with the results from an earlier experiment and predictions by shellmodel calculations using various effective interactions. The mechanism leading to the vanishing decay strength to the first 1 + level of the 22 F nucleus, predicted with the USD effective interaction but not supported by the experimental data, is analysed.
“Safe” Coulomb Excitation ofMg30
We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient γ spectrometer MINIBALL. Using Mg-30 ions accelerated to an energy of 2.25 MeV/u together with a thin Ni-nat target, Coulomb excitation of the first excited 2(+) states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative deexcitation γ-ray yields the B(E2;0(gs)(+)R 2(1)(+)) value of Mg-30 was determined to be 241(31)e(2) fm(4). Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the …
Yields of neutron-rich rubidium and cesium isotopes from fast-neutron induced fission of 238U, obtained by studying their release from a thick ISOL target
Abstract In the framework of the EURISOL project, the production of neutron-rich isotopes of rubidium and cesium has been studied. The intensities of mass-separated beams of rubidium and cesium isotopes generated from a thick 238 UC x target connected to a surface ionizer have been measured. The release properties of 140 Cs and 91 Rb have been investigated. The obtained results allowed us to determine the relative fission yields of rubidium and cesium isotopes with high accuracy.
Sub-Barrier Coulomb Excitation ofSn110and Its Implications for theSn100Shell Closure
The first excited 2(+) state of the unstable isotope Sn-110 has been studied in safe Coulomb excitation at 2.82 MeV/u using the MINIBALL array at the REX-ISOLDE post accelerator at CERN. This is the first measurement of the reduced transition probability of this state using this method for a neutron deficient Sn isotope. The strength of the approach lies in the excellent peak-to-background ratio that is achieved. The extracted reduced transition probability, B(E2 : 0(+) -> 2(+)) 0.220 +/- 0.022e(2) b(2), strengthens the observation of the evolution of the B(E2) values of neutron deficient Sn isotopes that was observed recently in intermediate-energy Coulomb excitation of Sn-108. It implies …
Structure And Decay Of Neutron-Rich Nuclides In The 115 ≤ A ≤ 138 Mass Range And r-Process Nucleosynthesis
The structure and decay of neutron‐rich r‐process nuclides has been studied by a variety of means that take advantage of enhanced selectivity to permit identification of exotic nuclides. New level structures are presented for 134,135Sb along with data for Ag isomers and Cd yrast structures. Some of the properties measured play an important role in calculations of the yields of elements and isotopes produced in r‐process nucleosynthesis that takes place at high temperature in the presence of large densities of neutrons.
Light exotic isotopes: recent beam developments and physics applications at ISOLDE
This paper is divided in three parts: (i) the measurement of yields and decay losses of Li and Be isotopes released from a thin foil tantalum target at the CERN/ISOLDE PS-Booster; (ii) results from beta-decay experiments on Be-12 and Be-14, an improved half-life of 21.49(3) ms has been obtained for Be-12; (iii) the beta-decay of C-9. An outline of the analysis procedure to determine the branching at high excitation energies is given. The ground-state branch has been determined to 54.1(15)%.
News on 12C from beta-decay studies
We discuss the importance of the spectroscopic properties of the resonances of 12C just above the 3α-threshold, and review the existing experimental information of this region with emphasis on O+ and 2+ states. A new experimental approach for studying the β-decays of 12B and 12N is presented based on techniques developed in the context of Radioactive beam (rare isotope) physics. Finally preliminary results from an ongoing analysis of two recent experiments are given. © 2004 Published by Elsevier B.V.
Coulomb Excitation of Neutron-Rich Zn Isotopes: First Observation of the21+State inZn80
Neutron-rich, radioactive Zn isotopes were investigated at the Radioactive Ion Beam facility REX-ISOLDE (CERN) using low-energy Coulomb excitation. The energy of the 2(1)+ state in 78Zn could be firmly established and for the first time the 2+ --> 0(1)+ transition in 80Zn was observed at 1492(1) keV. B(E2,2(1)+ --> 0(1)+) values were extracted for (74,76,78,80)Zn and compared to large scale shell model calculations. With only two protons outside the Z=28 proton core, 80Zn is the lightest N=50 isotone for which spectroscopic information has been obtained to date. Two sets of advanced shell model calculations reproduce the observed B(E2) systematics. The results for N=50 isotones indicate a g…
Measurement of the Be7(n,p) cross section at thermal energy
The Be7(n,p) cross section was measured with an ion-implanted Be7 target at a thermal neutron beam of the research reactor LVR-15 in Řež. The cross section to the ground state of Li7 is σ(n,p0)=43800±1400b and the cross section to the first excited state of Li7 is σ(n,p1)=520±260b.
Beta-decay half-lives of $^{70}$Kr and $^{74}$Rb
Abstract Beta-decay half-lives of two nuclei close to N = Z line, 70 Kr and 74 Rb, have been measured at the ISOLDE mass-separator facility at CERN. Importance of these half-lives on two ingredients explaining existence and development of the Universe, the astrophysical nucleosynthesis and the Standard Model, are discussed.
N=82Shell Quenching of the Classicalr-Process “Waiting-Point” NucleusCd130
First $\ensuremath{\beta}$- and $\ensuremath{\gamma}$-spectroscopic decay studies of the $N=82$ $r$-process ``waiting-point'' nuclide $^{130}\mathrm{C}\mathrm{d}$ have been performed at CERN/ISOLDE using the highest achievable isotopic selectivity. Several nuclear-physics surprises have been discovered. The first one is the unanticipatedly high energy of 2.12 MeV for the [$\ensuremath{\pi}{g}_{9/2}\ensuremath{\bigotimes}\ensuremath{\nu}{g}_{7/2}]$ ${1}^{+}$ level in $^{130}\mathrm{I}\mathrm{n}$, which is fed by the main Gamow-Teller transition. The second surprise is the rather high ${Q}_{\ensuremath{\beta}}$ value of 8.34 MeV, which is in agreement only with recent mass models that include…
Magicity of theN68iSemidouble-Closed-Shell Nucleus Probed by Gamow-Teller Decay of the Odd-ANeighbors
The particle-hole excitations through the $N\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}40$ subshell around ${}^{68}\mathrm{Ni}$ have been studied by the $\ensuremath{\beta}$ decay of ${}^{69}\mathrm{Co}$ and ${}^{69}\mathrm{Ni}$. The half-life of ${}^{69}\mathrm{Co}$ was measured to be 0.22(2) s, and a new $\ensuremath{\beta}$-decaying isomer with a half-life of 3.5(5) s was identified in ${}^{69}\mathrm{Ni}$. From the decay of the ${}^{69}\mathrm{Ni}$ isomer a 9(4)% mixing of the $\ensuremath{\pi}{p}_{3/2}^{+1}\ensuremath{\nu}{p}_{1/2}^{\ensuremath{-}2}\ensuremath{\nu}{g}_{9/2}^{+2}$ configuration into the ground state of ${}^{69}\mathrm{Cu}$ can be deduced. Significant polarizatio…
Change in structure between the $I = 1/2$ states in $^{181}$Tl and $^{177,179}$Au
Abstract The first accurate measurements of the α-decay branching ratio and half-life of the I π = 1 / 2 + ground state in 181Tl have been made, along with the first determination of the magnetic moments and I = 1 / 2 spin assignments of the ground states in 177,179Au. The results are discussed within the complementary systematics of the reduced α-decay widths and nuclear g factors of low-lying, I π = 1 / 2 + states in the neutron-deficient lead region. The findings shed light on the unexpected hindrance of the 1 / 2 + → 1 / 2 + , 181Tl → g 177 Aug α decay, which is explained by a mixing of π 3 s 1 / 2 and π 2 d 3 / 2 configurations in 177Aug, whilst 181Tlg remains a near-pure π 3 s 1 / 2 .…
β decay of67Co
The \ensuremath{\beta}-decay properties of ${}^{67}\mathrm{Co}$ produced in proton-induced fission of ${}^{238}\mathrm{U}$ were measured by the detection of \ensuremath{\beta}-delayed \ensuremath{\gamma} rays emitted from an isotopically pure mass-separated source obtained by laser ionization. The measured half-life of 0.425(20) s is more accurate than previous values. New \ensuremath{\gamma} transitions were observed, and corresponding branching ratios and $\mathrm{log}\mathrm{ft}$ values were deduced. The ${}^{67}\mathrm{Co}$ decay scheme is discussed in terms of the single-particle shell model.
Decay of theN=126, Fr213nucleus
gamma rays following the EC/beta(+) and alpha decay of the N = 126, Fr-213 nucleus have been observed at the CERN isotope separator on-line (ISOLDE) facility with the help of gamma-ray and conversion-electron spectroscopy. These gamma rays establish several hitherto unknown excited states in Rn-213. Also, five new a-decay branches from the Fr-213 ground state have been discovered. Shell model calculations have been performed to understand the newly observed states in Rn-213.
β−decay of the neutron-rich isotope215Pb
This Brief Report reports on the first observation of the β--delayed γ decay of 215Pb, feeding states in 215Bi. The 215Pb beam was produced using resonant laser ionization and mass separated at the ISOLDE-CERN on-line mass separator. This ensured clean identification of the γ rays as belonging to the decay of 215Pb or its β-decay daughters. A half-life of 147(12) s was measured for the 215Pb β decay and a level scheme for the daughter nucleus 215Bi is proposed, resulting in an extended systematics of the excited states of the neutron-rich Bi isotopes.
Low-spin structure of85Se and theβnbranching of85As
Fission fragments from neutron-induced fission of ${}^{235}$U produced at the high-flux reactor of the Institut Laue-Langevin, Grenoble, were separated with the Lohengrin separator to provide a beam of neutron-rich ${}^{85}\phantom{\rule{-0.16em}{0ex}}$As nuclei. The ${\ensuremath{\beta}}^{\ensuremath{-}}$ decay of ${}^{85}\phantom{\rule{-0.16em}{0ex}}$As to ${}^{85}$Se was studied using $\ensuremath{\gamma}$-$\ensuremath{\gamma}$ and $\ensuremath{\beta}$-$\ensuremath{\gamma}$ coincidence techniques. ${}^{85}$Se was also studied using the prompt-$\ensuremath{\gamma}$ coincidence data from spontaneous fission of ${}^{248}$Cm and ${}^{252}$Cf measured with the Eurogam2 and Gammasphere Ge arra…
Beta decay of neutron-rich Co: Probing single-particle states at and above the N=40 subshell closure
Neutron-rich Co nuclei with A=66–70 were produced by the laser-ionization isotope-separation on-line method. The β decay from these nuclei has been studied. A case example is given by reporting on the observed decay scheme of 68Co. The half life of the ground-state decay of this nucleus was measured to be 0.21(3) seconds. In addition, a new β decaying isomer half life of 1.16(25) seconds was discovered. The level scheme of 68Ni has been significantly extended, and an interpretation of the observed levels is made by assuming that the N=40 gap has the characteristics of a shell closure.
Selective laser ionization of very neutron-rich cadmium isotopes: Decay properties of131Cd83and132Cd84
A chemically selective laser ion source has been applied in a decay study of the very neutron-rich isotopes ${}^{131}\mathrm{Cd}$ and ${}^{132}\mathrm{Cd}$ at CERN/ISOLDE. For the ${\ensuremath{\beta}}^{\ensuremath{-}}$ decay of the $N=83$ nuclide ${}^{131}\mathrm{Cd}$ a surprisingly short half-life of $(68\ifmmode\pm\else\textpm\fi{}3)$ ms and a weak delayed-neutron branch of ${P}_{n}=(3.5\ifmmode\pm\else\textpm\fi{}1.0)%$ were observed. For the $N=84$ nuclide ${}^{132}\mathrm{Cd}$ a half-life of $(97\ifmmode\pm\else\textpm\fi{}10)$ ms and a ${P}_{n}$ value of $(60\ifmmode\pm\else\textpm\fi{}15)%$ were obtained. Schematic features of both decay schemes are developed. We find that our new d…
β decay studies of n-rich Cs isotopes with the ISOLDE Decay Station
R. Lica et al. -- 14 pags., 7 figs., tab. -- Open Access funded by Creative Commons Atribution Licence 3.0
Direct Measurement of the Mass Difference ofHo163andDy163Solves theQ-Value Puzzle for the Neutrino Mass Determination
The atomic mass difference of (163)Ho and (163)Dy has been directly measured with the Penning-trap mass spectrometer SHIPTRAP applying the novel phase-imaging ion-cyclotron-resonance technique. Our measurement has solved the long-standing problem of large discrepancies in the Q value of the electron capture in (163)Ho determined by different techniques. Our measured mass difference shifts the current Q value of 2555(16) eV evaluated in the Atomic Mass Evaluation 2012 [G. Audi et al., Chin. Phys. C 36, 1157 (2012)] by more than 7σ to 2833(30(stat))(15(sys)) eV/c(2). With the new mass difference it will be possible, e.g., to reach in the first phase of the ECHo experiment a statistical sensit…
$\beta$ - decay of the M$_{T}$=-1 nucleus $^{58}$Zn studied by selective laser ionization
$\beta$ - decay of $^{58}$Zn has been studied for the first time. A new laser ion-source concept has been used to produce mass-separated sources for $\beta$ and $\gamma$ - spectroscopy. The half-life of $^{58}$Zn was determined to be 86(18) ms. Comparisons are made with previous data from charge-exchange reactions. Our Gamow-Teller strength to the 1$^{+}$ state at 1051 keV excitation in $^{58}$Cu agrees well with the value extracted from a recent ($^{3}$He, t) study. Extensive shell-model calculations are presented.
Coulomb Excitation ofCu68,70: First Use of Postaccelerated Isomeric Beams
We report on the first low-energy Coulomb excitation measurements with radioactive Ipi=6- beams of odd-odd nuclei 68,70Cu. The beams were produced at ISOLDE, CERN and were post-accelerated by REX-ISOLDE to 2.83 MeV/nucleon. gamma rays were detected with the MINIBALL spectrometer. The 6- beam was used to study the multiplet of states (3-, 4-, 5-, 6-) arising from the pi2p3/2nu1g9/2 configuration. The 4- state of the multiplet was populated via Coulomb excitation and the B(E2;6--->4-) value was determined in both nuclei. The results obtained illustrate the fragile stability of the Z=28 shell and N=40 subshell closures. A comparison with large-scale shell-model calculations using the 56Ni core…
Structures ofPo201andRn205from EC/β+-decay studies
Several low-lying excited states in {sub 86}{sup 205}Rn{sub 119} and {sub 84}{sup 201}Po{sub 117} were identified for the first time following EC/{beta}{sup +} decay of {sup 205}Fr and {sup 201}At, respectively, using {gamma}-ray and conversion electron spectroscopy at the CERN isotope separator on-line (ISOLDE) facility. The EC/{beta}{sup +} branch from {sup 205}Fr was measured to be 1.5(2)%. The excited states of the daughter nuclei are understood in terms of the odd nucleon coupling to the neighboring even-even core. The neutron single-particle energies of the p{sub 3/2} orbital relative to the f{sub 5/2} ground state in {sup 205}Rn, and the f{sub 5/2} orbital relative to the p{sub 3/2} …
Laser photodetachment of radioactive $^{128}$I$^−$
International audience; The first experimental investigation of the electron affinity (EA) of a radioactive isotope has been conducted at the CERN-ISOLDE radioactive ion beam facility. The EA of the radioactive iodine isotope (128)I (t (1/2) = 25 min) was determined to be 3.059 052(38) eV. The experiment was conducted using the newly developed Gothenburg ANion Detector for Affinity measurements by Laser PHotodetachment (GANDALPH) apparatus, connected to a CERN-ISOLDE experimental beamline. (128)I was produced in fission induced by 1.4 GeV protons striking a thorium/tantalum foil target and then extracted as singly charged negative ions at a beam energy of 20 keV. Laser photodetachment of th…
Progress in ISOL target–ion source systems
The heart of every ISOL (isotope separation on-line) facility is its target and ion source system. Its efficiency, selectivity and rapidity is decisive for the production of intense and pure ion beams of short-lived isotopes. Recent progress in ISOL target and ion source technology is discussed at the examples of radioactive ion beams of exotic zinc and tin isotopes that were purified by isothermal chromatography and molecular sideband separation respectively. An outlook is given to which other elements these purification methods are applicable.
CERN-MEDICIS: A Review Since Commissioning in 2017
The CERN-MEDICIS (MEDical Isotopes Collected from ISolde) facility has delivered its first radioactive ion beam at CERN (Switzerland) in December 2017 to support the research and development in nuclear medicine using non-conventional radionuclides. Since then, fourteen institutes, including CERN, have joined the collaboration to drive the scientific program of this unique installation and evaluate the needs of the community to improve the research in imaging, diagnostics, radiation therapy and personalized medicine. The facility has been built as an extension of the ISOLDE (Isotope Separator On Line DEvice) facility at CERN. Handling of open radioisotope sources is made possible thanks to i…
Beta-decay properties of the neutron-rich $^{94-99}$Kr and $^{142-147}$Xe isotopes
Beta-decay half-lives and delayed-neutron emission probabilities of the neutron-rich noble-gas isotopes Kr94-99 and Xe142-147 have been measured at the PSB-ISOLDE facility at CERN. The results are compared to QRPA shell-model predictions and are used in dynamic calculations of r-process abundances of Kr and Xe isotopes. (C) 2002 Elsevier Science B.V. All rights reserved.
Properties of the 12C 10 MeV state determined through β-decay
16 pages, 1 table, 10 figures.-- PACS nrs.: 23.40.-s; 26.20.+f; 27.20.+n.-- Printed version published Oct 3, 2005.
In-source laser spectroscopy of75,77,78Cu: Direct evidence for a change in the quasiparticle energy sequence in75,77Cu and an absence of longer-lived isomers in78Cu
This paper describes measurements on the isotopes (75,77,78)Cu by the technique of in-source laser spectroscopy, at the ISOLDE facility, CERN. The role of this technique is briefly discussed in the ...
Decay of48-50Ar isotopes
International audience; Information on β-decay properties of neutron-rich 84-05Ar was obtained at the ISOLDE mass-separator facility at CERN using isobaric selectivity. This was achieved by a combination of a plasma-ion source with a cooled transfer line and subsequent mass-separation. Normally, argon beams cannot be mass-separated from intense multi-charged symmetric fission krypton and xenon. Several techniques were used successfully in order to overcome this problem. Implication of the obtained information for a better understanding of the origin of the 48Ca/46Ca isotopic anomaly discovered in inclusions from the Allende meteorite is discussed.
Isotopic distributions of thermal-neutron-induced fission fragments of near-symmetric fission of Pu239,241 determined using calorimetric low-temperature detectors
Isotopic distributions were measured for the light fragment group in the transition region from asymmetric to symmetric fission for thermal neutron induced fission of $^{239}\mathrm{Pu}$ and $^{241}\mathrm{Pu}$ using the novel technology of calorimetric low temperature detectors in combination with the passive absorber method. Nuclear charge distributions were determined for 24 masses in the range $A=89$ to $A=112$ for $^{241}\mathrm{Pu}({n}_{\mathrm{th}},f)$ for the first time with the LOHENGRIN mass spectrometer. Moving from asymmetric to symmetric fission, known data were supplemented for masses from $A=110$ to $A=112$ for $^{241}\mathrm{Pu}({n}_{\mathrm{th}},f)$ and from $A=109$ to $A=1…
High-resolution laser resonance ionization spectroscopy of $^{143-147}$Pm
The European physical journal / A 56(2), 69 (2020). doi:10.1140/epja/s10050-020-00061-8
First observation of the β-decay of neutron-rich 215Pb and 218Bi by the pulsed-release technique and resonant laser ionisation
The neutron-rich Tl, Pb and Bi isotopes are of exceptional interest to trace the evolution of single-particle levels away from the doubly magic 208Pb towards the neutron-rich side of the nuclear chart. While 208Pb is well understood in terms of the shell model, experimental data on the heavier isotopes is very scarce and it is far from clear to what extent the shell model is upheld [1]. Furthermore, large branchings ratios for β-delayed neutron emission are expected in this mass region, adding astrophysical interest to the subject [2].
Interplay of quasiparticle and phonon excitations in 181Hf observed through (n,γ) and reactions
Abstract Nuclear levels of 181 Hf were investigated in the range up to 3 MeV excitation energy by (n, γ ) and (d,p) reactions. Over 170 levels and about 390 γ -transitions were established most of them for the first time. 25 rotational bands were identified. Comparison of the results of the two reactions yields information on the fine structure in the fragmentation of Nilsson strength. The states below 2 MeV with the most complete spectroscopic information were interpreted in terms of the Quasiparticle Phonon Model (QPM). Excitation energies, electromagnetic transition rates, γ -branchings and spectroscopic factors are discussed in connection with their possible structure.
Charge radii and electromagnetic moments of At195–211
Hyperfine-structure parameters and isotope shifts of At195-211 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantl…
Ground-state spin of 59Mn
Beta decay of $^{59}$Mn has been studied at PSB-ISOLDE, CERN. The intense and pure Mn beam was produced using the Resonance Ionization Laser Ion Source (RILIS). Based on the measured $\beta$-decay rates the ground-state spin and parity are proposed to be $J^{\pi}$ = 5/2$^{-}$. This result is consistent with the systematic trend of the odd-A Mn nuclei and extends the systematics one step further towards the neutron drip line.
Structure of191Pb from α- and β-decay spectroscopy
International audience; Complementary studies of 191 Pb have been made in the β decay of 191 Bi at LISOL (CRC) and in the α decay of 195 Po at ISOLDE (CERN). Fine structures in the α decay of the low-spin and high-spin isomers of 195 Po have been fully resolved. Identification of the parent state is made possible via isomer selection based on narrowband laser frequency scanning. The α-particle and γ-ray energies have been determined with greater precision. New α-particle and γ-ray energies are identified. Branching ratios in the decay of 195 Po and 191 Pb have been examined. Structure of 191 Pb from α- and β-decay spectroscopy 2 PACS numbers: 23.20.Nx Internal conversion, 23.60.+e α decay, …
In-source laser spectroscopy of dysprosium isotopes at the ISOLDE-RILIS
A number of radiogenically produced dysprosium isotopes have been studied by in-source laser spectroscopy at ISOLDE using the Resonance Ionization Laser Ion Source (RILIS). Isotope shifts were measured relative to $^{152}$Dy in the 4 f$^{ 10}$6s$^{2}$ $^5$I$_8$ (gs) $\rightarrow$ 4 f$^{ 10}$6s6p (8,1)$^8_o$ (418.8 nm$_{vac}$) resonance transition. The electronic factor, F, and mass shift factor, M, were extracted and used for determining the changes in mean-squared charge radii for $^{145m}$Dy and $^{147m}$Dy for the first time. A number of radiogenically produced dysprosium isotopes have been studied by in-source laser spectroscopy at ISOLDE using the Resonance Ionization Laser Ion Source (…
Charge radii of odd-A 191–211Po isotopes
Isotope shifts have been measured for the odd-A polonium isotopes 191–211Po and changes in the nuclear mean square charge radii δr2 have been deduced. The measurements were performed at CERN-ISOLDE using the in-source resonance-ionization spectroscopy technique. The combined analysis of these data and our recent results for even-A polonium isotopes indicates an onset of deformation already at 197,198Po, when going away from stability. This is significantly earlier than was suggested by previous theoretical and experimental studies of the polonium isotopes. Moreover and in contrast to the mercury isotopes, where a strong odd–even staggering of the charge radii of the ground states was observ…
Study of the radiative decay of the low-energy isomer in ${}^{229}$Th
Non-analog β decay of 74Rb
The magnitude of the Coulomb mixing parameter δ 1 has been experimentally deduced, for the first time, for the β decay of 74 Rb. The estimated magnitude is derived from the feeding of the non-analog first excited 0 + state in 74 Kr. The inferred upper limit of 0.07% is small compared to theoretical predictions. The half-life was measured to be 64.90(9) ms. 2001 Published by Elsevier Science B.V.
β-decay studies of135–137Snusing selective resonance laser ionization techniques
The decays of the very neutron rich Sn isotopes Sn135-137 were studied at CERN/ISOLDE using isotopic and isobaric selectivity achieved by the use of a resonance ionization laser ion source and mass spectroscopy, respectively. Neutron decay rates, gamma-ray singles, and gamma-gamma coincidence data were collected as a function of time. The half-life (T-1/2) and delayed neutron emission probability (P-n) values of 135 Sn were measured to be 530(20) ms and 21(3)%, respectively. For Sn-136, a T-1/2 of 250(30) ms was determined along with a P-n value of 30(5)%. For Sn-137, a T-1/2 of 190(60) ms and a P-n value of 58(15)% were deduced. Identification of low-energy transitions in Sb-135 was made p…
Production of neutron-rich surface-ionized nuclides at PARRNe
Yields of neutron-rich isotopes produced by fast neutron induced fission of 238 U were measured at the ISOL set-up Production dAtomes Radioactifs Riches en Neutrons. A surface ion source was used to ionize selectively elements with low ionization potentials. In order to observe also the most n-rich isotopes, the identification was achieved by a combined measurement of b- and c-rays and b-delayed neutrons. The flux of fast neutrons inducing fission was generated by a 1 lA beam of 26 MeV deuterons stopped in a graphite converter. The target was a standard ISOLDE type 238 UC
Production of mass-separated Erbium-169 towards the first preclinical in vitro investigations
The β−-particle-emitting erbium-169 is a potential radionuclide toward therapy of metastasized cancer diseases. It can be produced in nuclear research reactors, irradiating isotopically-enriched 168Er2O3. This path, however, is not suitable for receptor-targeted radionuclide therapy, where high specific molar activities are required. In this study, an electromagnetic isotope separation technique was applied after neutron irradiation to boost the specific activity by separating 169Er from 168Er targets. The separation efficiency increased up to 0.5% using resonant laser ionization. A subsequent chemical purification process was developed as well as activity standardization of the radionuclid…