0000000000529898

AUTHOR

Yupeng Xu

0000-0002-8476-9217

Filters design and characterization for LAD instrument onboard eXTP

Copyright 2022 Society of Photo‑Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited. The LAD (Large Area Detector) instrument, onboard the Sino-European mission eXTP (enhanced X-ray Timing and Polarimetry), will perform single-photon, high-resolution timing and energy measurements, in the energy range 2–30 keV, with a large collecting area. Its silicon drift detectors need shielding from NIR/Vis/UV light by astrophysical sources and the bright Ea…

research product

The Large Area Detector onboard the eXTP mission

The Large Area Detector (LAD) is the high-throughput, spectral-timing instrument onboard the eXTP mission, a flagship mission of the Chinese Academy of Sciences and the China National Space Administration, with a large European participation coordinated by Italy and Spain. The eXTP mission is currently performing its phase B study, with a target launch at the end-2027. The eXTP scientific payload includes four instruments (SFA, PFA, LAD and WFM) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. The LAD instrument is based on the design originally proposed for the LOFT mission. It envisages a deployed 3.2 m2 effective area in the 2-30 keV energy range, a…

research product

GrailQuest and HERMES: hunting for gravitational wave electromagnetic counterparts and probing space-time quantum foam

GrailQuest (Gamma-ray Astronomy International Laboratory for Quantum Exploration of Space-Time) is an ambitious astrophysical mission concept that uses a fleet of small satellites whose main objective is to search for a dispersion law for light propagation in vacuo. Within Quantum Gravity theories, different models for space-time quantization predict relative discrepancies of the speed of photons w.r.t. the speed of light that depend on the ratio of the photon energy to the Planck energy. This ratio is as small as 10-23 for photons in the γ- ray band (100 keV). Therefore, to detect this effect, light must propagate over enormous distances and the experiment must have extraordinary sensitivi…

research product

The HERMES-Technologic and Scientific Pathfinder

HERMES-TP/SP (High Energy Rapid Modular Ensemble of Satellites Technologic and Scientific Pathfinder) is a constellation of six 3U nano-satellites hosting simple but innovative X-ray detectors, characterized by a large energy band and excellent temporal resolution, and thus optimized for the monitoring of Cosmic High Energy transients such as Gamma Ray Bursts and the electromagnetic counterparts of Gravitational Wave Events, and for the determination of their positions. The projects are funded by the Italian Ministry of University and Research and by the Italian Space Agency, and by the European Union Horizon 2020 Research and Innovation Program under Grant Agreement No. 821896. HERMES-TP/S…

research product

Accretion in strong field gravity with eXTP

In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry (eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique capability of using advanced 'spectral-timing-polarimetry' techniques to analyze the rapid variations with three orthogonal diagnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field gravity on the material within them and the powerful outflows which are driven by the accretion process.

research product

Timing techniques applied to distributed modular high-energy astronomy: the H.E.R.M.E.S. project

The HERMES-TP/SP (High Energy Rapid Modular Ensemble of Satellites -- Technologic and Scientific Pathfinder) is an in-orbit demonstration of the so-called distributed astronomy concept. Conceived as a mini-constellation of six 3U nano-satellites hosting a new miniaturized detector, HERMES-TP/SP aims at the detection and accurate localisation of bright high-energy transients such as Gamma-Ray Bursts. The large energy band, the excellent temporal resolution and the wide field of view that characterize the detectors of the constellation represent the key features for the next generation high-energy all-sky monitor with good localisation capabilities that will play a pivotal role in the future …

research product

Optical thermal filters for eXTP: manufacturing and characterization

In order to ensure the effective detection of X-ray astronomical detectors by blocking ultraviolet, visible and infrared light, adding optical thermal filter in front of the load is an effective method. According to the scientific requirements of eXTP, optical thermal filters with aluminized polyimide (PI) film structure had been designed and tested in this paper, the results of mechanical tests including burst pressure, vibration and acoustic tests, also the transparent properties of optics in UV, Vis and IR lights are presented. The mechanical test results show that the filters for LAD and SFA can't pass the acoustic tests, causing the thickness of PI should be increased or a nickel mesh …

research product

The scientific payload on-board the HERMES-TP and HERMES-SP CubeSat missions

HERMES (High Energy Rapid Modular Ensemble of Satellites) Technological and Scientific pathfinder is a space borne mission based on a LEO constellation of nano-satellites. The 3U CubeSat buses host new miniaturized detectors to probe the temporal emission of bright high-energy transients such as Gamma-Ray Bursts (GRBs). Fast transient localization, in a field of view of several steradians and with arcmin-level accuracy, is gained by comparing time delays among the same event detection epochs occurred on at least 3 nano-satellites. With a launch date in 2022, HERMES transient monitoring represents a keystone capability to complement the next generation of gravitational wave experiments. In t…

research product

The enhanced X-ray Timing and Polarimetry mission—eXTP

In this paper we present the enhanced X-ray Timing and Polarimetry mission - eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to det…

research product

Observatory science with eXTP

Disponible preprint en: arXiv:1812.04023v1 [astro-ph.HE] [v1] Mon, 10 Dec 2018 19:00:52 UTC (4,376 KB)

research product

The Large Area Detector onboard the eXTP mission

The eXTP (enhanced X-ray Timing and Polarimetry) mission is a major project of the Chinese Academy of Sciences (CAS) and China National Space Administration (CNSA) currently performing an extended phase A study and proposed for a launch by 2025 in a low-earth orbit. The eXTP scientific payload envisages a suite of instruments (Spectroscopy Focusing Array, Polarimetry Focusing Array, Large Area Detector and Wide Field Monitor) offering unprecedented simultaneous wide-band X-ray spectral, timing and polarimetry sensitivity. A large European consortium is contributing to the eXTP study and it is expected to provide key hardware elements, including a Large Area Detector (LAD). The LAD instrumen…

research product

Dense matter with eXTP

In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics o…

research product