0000000000534862
AUTHOR
A. Negret
Investigation of the Δn = 0 selection rule in Gamow-Teller transitions : The β-decay of 207Hg
Gamow-Teller β decay is forbidden if the number of nodes in the radial wave functions of the initial and final states is different. This Δn = 0 requirement plays a major role in the β decay of heavy neutron-rich nuclei, affecting the nucleosynthesis through the increased half-lives of nuclei on the astrophysical r-process pathway below both Z = 50 (for N > 82) and Z = 82 (for N >126). The level of forbiddenness of the Δn = 1ν1g9/2 → π0g7/2 transition has been investigated from the β− decay of the ground state of 207Hg into the single-proton-hole nucleus 207Tl in an experiment at the ISOLDE Decay Station. From statistical observational limits on possible γ-ray transitions depopulating the π0…
Gamow-Teller strengths in proton-rich exotic nuclei deduced in the combined analysis of mirror transitions
Isospin symmetry is expected for the T-z=+/- 1 -> 0 isobaric analogous transitions in isobars with mass number A, where T-z is the z component of isospin T. Assuming this symmetry, strengths of analogous Gamow-Teller (GT) transitions within A=50 isobars were determined from a high energy-resolution T-z=+1 -> 0, Cr-50(He-3,t)Mn-50 study at 0 degrees in combination with the decay Q value and lifetime from the T-z=-1 -> 0, Fe-50 ->Mn-50 beta decay. This method can be applied to other pf-shell nuclei and can be used to study GT strengths of astrophysical interest.
First Accurate Normalization of the $\beta$-delayed $\alpha$ Decay of $^{16}$N and Implications for the $^{12}$C$(\alpha,\gamma)^{16}$O Astrophysical Reaction Rate
The $^{12}\text{C}(\alpha,\gamma){}^{16}\text{O}$ reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced $\alpha$ width, $\gamma_{11}$, of the bound $1^-$ level in $^{16}$O is particularly important to determine the cross section. The magnitude of $\gamma_{11}$ is determined via sub-Coulomb $\alpha$-transfer reactions or the $\beta$-delayed $\alpha$ decay of $^{16}$N, but the latter approach is presently hampered by the lack of sufficiently precise data on the $\beta$-decay branching ratios. Here we report improved branching ratios for the bound $1^-$ level [$b_{\beta…
New ß-decaying state in 214Bi
Decay studies of the long-lived states in $^{186}$Tl
Decay spectroscopy of the long-lived states in $^{186}$Tl has been performed at the ISOLDE Decay Station at ISOLDE, CERN. The $\alpha$ decay from the low-spin $(2^-)$ state in $^{186}$Tl was observed for the first time and a half-life of $3.4^{+0.5}_{-0.4}$ s was determined. Based on the $\alpha$-decay energy, the relative positions of the long-lived states were fixed, with the $(2^-)$ state as the ground state, the $7^{(+)}$ state at 77(56)~keV and the $10^{(-)}$ state at 451(56) keV. The level scheme of the internal decay of the $^{186}$Tl($10^{(-)}$) state ($T_{1/2} = 3.40(9)$ s), which was known to decay solely through emission of 374 keV $\gamma$-ray transition, was extended and a lowe…
Investigation of the Δn = 0 selection rule in Gamow-Teller transitions: The β-decay of 207Hg
5 pags., 3 figs., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0
Decay studies of the long-lived states in Tl-186
9 pags., 12 figs., 3 tabs.
New β-decaying state in 214Bi
A new β-decaying state in 214Bi has been identified at the ISOLDE Decay Station at the CERN-ISOLDE facility. A preferred Iπ = (8−) assignment was suggested for this state based on the β-decay feeding pattern to levels in 214Po and shell-model calculations. The half-life of the Iπ = (8−) state was deduced to be T1/2 = 9.39(10) min. The deexcitation of the levels populated in 214Po by the β decay of this state was investigated via γ -γ coincidences and a number of new levels and transitions was identified. Shell-model calculations for excited states in 214Bi and 214Po were performed using two different effective interactions: the H208 and the modified Kuo-Herling particle interaction. Both ca…
Octupole states in Tl207 studied through β decay
The β decay of 207Hg into the single-proton-hole nucleus 207Tl has been studied through γ-ray spectroscopy at the ISOLDE Decay Station (IDS) with the aim of identifying states resulting from coupling of the πs−11/2, πd−13/2, and πh−111/2 shell model orbitals to the collective octupole vibration. Twenty-two states were observed lying between 2.6 and 4.0 MeV, eleven of which were observed for the first time, and 78 new transitions were placed. Two octupole states (s1/2-coupled) are identified and three more states (d3/2-coupled) are tentatively assigned using spin-parity inferences, while further h11/2-coupled states may also have been observed for the first time. Comparisons are made with st…
Evolution of deformation in neutron-rich Ba isotopes up to A=150
12 pags., 11 figs., 3 tabs. -- Open Access funded by Creative Commons Atribution Licence 4.0
The Nuclear astrophysics program at n_TOF (CERN)
An important experimental program on Nuclear Astrophysics is being carried out at the n_TOF since several years, in order to address the still open issues in stellar and primordial nucleosynthesis. Several neutron capture reactions relevant to s-process nucleosynthesis have been measured so far, some of which on important branching point radioisotopes. Furthermore, the construction of a second experimental area has recently opened the way to challenging measurements of (n, charged particle) reactions on isotopes of short half-life. The Nuclear Astrophysics program of the n_TOF Collaboration is here described, with emphasis on recent results relevant for stellar nucleosynthesis, stellar neut…
Competition between allowed and first-forbidden β decays of At208 and expansion of the Po208 level scheme
The structure of 208Po populated through the EC/β+ decay of 208At is investigated using γ-ray spectroscopy at the ISOLDE Decay Station. The presented level scheme contains 27 new excited states and 43 new transitions, as well as a further 50 previously observed γ rays which have been (re)assigned a position. The level scheme is compared to shell model calculations. Through this analysis approximately half of the β-decay strength of 208At is found to proceed via allowed decay and half via first-forbidden decay. The first-forbidden transitions predominantly populate core excited states at high excitation energies, which is qualitatively understood using shell model considerations. This mass r…
Decay studies of the long-lived states in Tl186
Decay spectroscopy of the long-lived states in 186Tl has been performed at the ISOLDE Decay Station at ISOLDE, CERN. The α decay from the low-spin (2−) state in 186Tl was observed for the first time and a half-life of 3.4+0.5−0.4 s was determined. Based on the α-decay energy, the relative positions of the long-lived states were fixed, with the (2−) state as the ground state, the 7(+) state at 77(56) keV, and the 10(−) state at 451(56) keV. The level scheme of the internal decay of the 186Tl(10(−)) state [T1/2=3.40(9) s], which was known to decay solely through emission of 374-keV γ-ray transition, was extended and a lower limit for the β-decay branching bβ>5.9(3)% was determined. The extrac…
First β-decay spectroscopy of $^{135}$In and new $β$-decay branches of $^{134}$In
International audience; The $\beta$ decay of the neutron-rich $^{134}$In and $^{135}$In was investigated experimentally in order to provide new insights into the nuclear structure of the tin isotopes with magic proton number $Z=50$ above the $N=82$ shell. The $\beta$-delayed $\gamma$-ray spectroscopy measurement was performed at the ISOLDE facility at CERN, where indium isotopes were selectively laser-ionized and on-line mass separated. Three $\beta$-decay branches of $^{134}$In were established, two of which were observed for the first time. Population of neutron-unbound states decaying via $\gamma$ rays was identified in the two daughter nuclei of $^{134}$In, $^{134}$Sn and $^{133}$Sn, at…
Electromagnetic transition rates in theN=80nucleus58138Ce
The half-life of the Iπ=6+ yrast state at Ex=2294 keV in 138Ce has been measured as T1/2=880(19) ps using the fast-timing γ-ray coincidence method with a mixed LaBr3(Ce)-HPGe array. The excited states in 138Ce have been populated by the 130Te(12C,4n) fusion-evaporation reaction at an incident beam energy of 56 MeV. The extracted B(E2;61+→41+)=0.101(24) W.u. value is compared with the predictions of truncated basis shell model calculations and with the systematics of the region. This shows an anomalous behavior compared to the neighboring isotonic and isotopic chains. Half-lives for the yrast 5-, 11+ and 14+ states in 138Ce have also been determined in this work.
β decay studies of n-rich Cs isotopes with the ISOLDE Decay Station
R. Lica et al. -- 14 pags., 7 figs., tab. -- Open Access funded by Creative Commons Atribution Licence 3.0
First β -decay spectroscopy of In 135 and new β -decay branches of In 134
First Accurate Normalization of the β-delayed α Decay of ^{16}N and Implications for the ^{12}C(α,γ)^{16}O Astrophysical Reaction Rate.
The ^{12}C(α,γ)^{16}O reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced α width, γ_{11}, of the bound 1^{-} level in ^{16}O is particularly important to determine the cross section. The magnitude of γ_{11} is determined via sub-Coulomb α-transfer reactions or the β-delayed α decay of ^{16}N, but the latter approach is presently hampered by the lack of sufficiently precise data on the β-decay branching ratios. Here we report improved branching ratios for the bound 1^{-} level [b_{β,11}=(5.02±0.10)×10^{-2}] and for β-delayed α emission [b_{βα}=(1.59±0.06)×10^{-5}].…
First Accurate Normalization of the β -delayed α Decay of N16 and Implications for the C12(α,γ)O16 Astrophysical Reaction Rate
The C-12(alpha,gamma)O-16 reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced a width, gamma(11), of the bound 1(-) level in O-16 is particularly important to determine the cross section. The magnitude of gamma(11) is determined via sub-Coulomb a-transfer reactions or the beta-delayed a decay of N-16, but the latter approach is presently hampered by the lack of sufficiently precise data on the beta-decay branching ratios. Here we report improved branching ratios for the bound 1(-) level [b(beta,11) = (5.02 +/- 0.10) x 10(-2)] and for beta-delayed alpha emission [b(…
Study of exotic decay of Cs isotope close to the proton drip line
6 pags., 6 figs. -- 27th International Nuclear Physics Conference (INPC2019) 29 July - 2 August 2019, Glasgow, UK
Competition between Allowed and First-Forbidden β Decay: The Case of Hg208→Tl208
The β decay of ^{208}Hg into the one-proton hole, one neutron-particle _{81}^{208}Tl_{127} nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N>126, Z<82 quadrant of neutron-rich nuclei. While both negative and positive parity states with spin 0 and 1 are expected within the Q_{β} window, only three negative parity states are populated directly in the β decay. The data provide a unique test of the competition between allowed Gamow-Teller and Fermi, and first-forbidden β decays, essential for the understanding of the nucleosynthesis of heavy nuclei in…
Competition between Allowed and First-Forbidden β Decay : The Case of Hg208→Tl208
The β decay of 208Hg into the one-proton hole, one neutron-particle 20881Tl127 nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N>126, Z<82 quadrant of neutron-rich nuclei. While both negative and positive parity states with spin 0 and 1 are expected within the Qβ window, only three negative parity states are populated directly in the β decay. The data provide a unique test of the competition between allowed Gamow-Teller and Fermi, and first-forbidden β decays, essential for the understanding of the nucleosynthesis of heavy nuclei in the rapid neut…
Gamow-Teller Transitions and β-decay Half-life in Proton Rich pf-shell Nuclei
In violent neutrino‐induced reactions at the core‐collapse stage of type II supernovae, Gamow‐Teller (GT) transitions starting from stable as well as unstable pf‐shell nuclei play important roles. In the β‐decay study of these unstable pf‐shell nuclei, half‐lives can be measured rather accurately. On the other hand, in high‐resolution (3He,t) charge‐exchange reactions at 0°, individual GT transitions up to high excitations can be studied. Assuming the isospin symmetry for the strengths of Tz = ±2→±1 analogous GT transitions, we present a “merged analysis” for the determination of GT transition strengths starting from proton‐rich Tz = −2 nuclei. We applied this analysis to the A = 52, T = 2 …
First Accurate Normalization of the beta-delayed alpha Decay of N-16 and Implications for the C-12(alpha,gamma)O-16 Astrophysical Reaction Rate
6 pags., 4 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0
Precision Lifetime Measurements Using LaBr3 Detectors With Stable and Radioactive Beams
A range of high resolution gamma-ray spectroscopy measurements have been carried out using arrays which include a number of Cerium-doped Lanthanum-Tribromide (LrBr3 (Ce)) scintillation detectors used in conjunction with high-resolution hyper-pure germanium detectors. Examples of the spectral and temporal responses of such set-ups, using both standard point radioactive sources 152 Eu and 56 Co, and in-beam fusionevaporation reaction experiments for precision measurements of nuclear excited states in 34 P and 138 Ce are presented. The current and future use of such arrays at existing (EURICA at RIKEN) and future (NUSTAR at FAIR) secondary radioactive beam facilities for precision measurements…
Detailed spectroscopy of doubly magic $^{132}$Sn
The structure of the doubly magic $^{132}_{50}$Sn$_{82}$ has been investigated at the ISOLDE facility at CERN, populated both by the $\beta^-$decay of $^{132}$In and $\beta^-$-delayed neutron emission of $^{133}$In. The level scheme of $^{132}$Sn is greatly expanded with the addition of 68 $\gamma$-transitions and 17 levels observed for the first time in the $\beta$ decay. The information on the excited structure is completed by new $\gamma$-transitions and states populated in the $\beta$-n decay of $^{133}$In. Improved delayed neutron emission probabilities are obtained both for $^{132}$In and $^{133}$In. Level lifetimes are measured via the Advanced Time-Delayed $\beta\gamma\gamma$(t) fas…
Electromagnetic Transition Rate Measurements in theN=80 Isotone,138Ce
A study of intrinsic state halflife measurements in the N=80 nucleus 138Ce has been made using the 130Te(12C,4n)138Ce fusion evaporation reaction at beam energy of 56 MeV. The fast-timing gamma-ray coincidence method was used with a mixed LaBr3(Ce)-HPGe array to establish the lifetimes of the yrast 6+ state at 2294 keV, the Iπ=5− state at 2218 keV, the Iπ=11+ state at 3943 keV and the 14+ state at that at 5312 keV, all of which are in the sub nanosecond regime. Reduced transition probabilities have been calculated for the electromagnetic decays from these states.
Gamow–Teller transitions in exotic pf-shell nuclei relevant to supernova explosion
Gamow–Teller (GT) transitions starting from unstable pf-shell nuclei are of interest not only in nuclear physics, but also in astrophysics, e.g. in violent neutrino induced reactions at the core-collapse stage of type II supernovae. In the β-decay study of these pf-shell nuclei, half-lives can be measured rather accurately. On the other hand, in high-resolution (3He, t) charge-exchange reactions at 0°, individual GT transitions up to high excitations can be studied. Assuming the isospin symmetry for the strengths of Tz = ±1 → 0 analogous GT transitions, we present a unique 'merged analysis' for the determination of absolute B(GT) values.
Normal and intruder configurations in $^{34}$Si populated in the $\beta^-$ decay of $^{34}$Mg and $^{34}$Al
The structure of Si34 was studied through γ spectroscopy separately in the β− decays of Mg34 and Al34 at the ISOLDE facility of CERN. Different configurations in Si34 were populated independently from the two recently identified β-decaying states in Al34 having spin-parity assignments Jπ=4− dominated by the normal configuration π(d5/2)−1⊗ν(f7/2) and Jπ=1+ by the intruder configuration π(d5/2)−1⊗ν(d3/2)−1(f7/2)2. The paper reports on spectroscopic properties of Si34 such as an extended level scheme, spin and parity assignments based on log(ft) values and γ-ray branching ratios, absolute β feeding intensities, and neutron emission probabilities. A total of 11 newly identified levels and 26 tr…
β decay of In133 : γ emission from neutron-unbound states in Sn133
Excited states in Sn-133 were investigated through the beta decay of In-133 at the ISOLDE facility. The ISOLDE Resonance Ionization Laser Ion Source (RILIS) provided isomer-selective ionization for In-133, allowing us to study separately, and in detail, the beta-decay branch of In-133 J(pi)= (9/2(+)) ground state and its J(pi) = (1/2(-)) isomer.Thanks to the large spin difference of the two beta-decaying states of In-133, it is possible to investigate separately the lower and higher spin states in the daughter, Sn-133, and thus to probe independently different single-particle and single-hole levels. We report here new gamma transitions observed in the decay of In-133, including those assign…
Gamow-Teller Transitions in Proton Rich Exotic pf-shell Nuclei Deduced from Mirror Transitions
The rp‐process nucleosynthesis proceeds through nuclei near the proton drip‐line, in which Gamow‐Teller (GT) transitions starting from unstable pf‐shell nuclei play important roles. In the β‐decay study of these nuclei, half‐lives can be measured rather accurately. On the other hand, in the high‐resolution (3He, t) charge‐exchange reactions on mirror nuclei, individual GT transitions can be studied up to high excitations. For the accurate study of the GT transition strengths in the A = 52, T = 2, system, we compare and combine the β‐decay study of the proton‐rich nucleus 52Ni and the 52Cr(3He, t) measurement assuming the isospin symmetry of the Tz = ±2→±1 transitions.