0000000000537291

AUTHOR

Tomi S. Koivisto

showing 7 related works from this author

Coupling matter in modified $Q$-gravity

2018

We present a novel theory of gravity by considering an extension of symmetric teleparallel gravity. This is done by introducing, in the framework of the metric-affine formalism, a new class of theories where the nonmetricity $Q$ is nonminimally coupled to the matter Lagrangian. More specifically, we consider a Lagrangian of the form $L \sim f_1(Q) + f_2(Q) L_M$, where $f_1$ and $f_2$ are generic functions of $Q$, and $L_M$ is the matter Lagrangian. This nonminimal coupling entails the nonconservation of the energy-momentum tensor, and consequently the appearance of an extra force. The motivation is to verify whether the subtle improvement of the geometrical formulation, when implemented in …

PhysicsHigh Energy Physics - TheoryCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationHigh Energy Physics::TheoryFormalism (philosophy of mathematics)General Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsMathematical physicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The virial theorem and the dark matter problem in hybrid metric-Palatini gravity

2012

Hybrid metric-Palatini gravity is a recently proposed theory, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini. The theory predicts the existence of a long-range scalar field, which passes the Solar System observational constraints, even if the scalar field is very light, and modifies the cosmological and galactic dynamics. Thus, the theory opens new possibilities to approach, in the same theoretical framework, the problems of both dark energy and dark matter. In this work, we consider the generalized virial theorem in the scalar-tensor representation of the hybrid metric-Palatini gravity. More specifically, taking into ac…

Physicsdark matter theory010308 nuclear & particles physicsDark matterVelocity dispersionFOS: Physical sciencesAstronomy and AstrophysicsVirial massAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesPotential energyGeneral Relativity and Quantum CosmologyVirial theoremTheoretical physicsGeneral Relativity and Quantum CosmologyPhysics - General PhysicsGeneral Physics (physics.gen-ph)Gravitational field0103 physical sciencesDark energygalaxy clusters010303 astronomy & astrophysicsScalar fieldmodified gravity
researchProduct

Novel couplings between nonmetricity and matter

2019

We present a novel theory of gravity, namely, an extension of symmetric teleparallel gravity. This is done by introducing a new class of theories where the nonmetricity $Q$ is coupled nonminimally to the matter Lagrangian. This nonminimal coupling entails the nonconservation of the energy-momentum tensor, and consequently the appearance of an extra force. We also present several cosmological applications.

High Energy Physics - TheoryHigh Energy Physics::TheoryGeneral Relativity and Quantum CosmologyCosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics - Theory (hep-th)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration

2011

We present a novel approach to modified theories of gravity that consists of adding to the Einstein-Hilbert Lagrangian an f(R) term constructed a la Palatini. Using the respective dynamically equivalent scalar-tensor representation, we show that the theory can pass the Solar System observational constraints even if the scalar field is very light. This implies the existence of a long-range scalar field, which is able to modify the cosmological and galactic dynamics, but leaves the Solar System unaffected. We also verify the absence of instabilities in perturbations and provide explicit models which are consistent with local tests and lead to the late-time cosmic acceleration.

PhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsSolar SystemCosmology and Nongalactic Astrophysics (astro-ph.CO)COSMIC cancer database010308 nuclear & particles physicsFOS: Physical sciencesPerturbation (astronomy)General Relativity and Quantum Cosmology (gr-qc)01 natural sciencesCosmologyGeneral Relativity and Quantum Cosmologysymbols.namesakeTheoretical physicsGeneral Relativity and Quantum CosmologyClassical mechanicsHigh Energy Physics - Theory (hep-th)0103 physical sciencessymbolsf(R) gravity010306 general physicsScalar fieldLagrangianAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmology of hybrid metric-Palatini f(X)-gravity

2012

A new class of modified theories of gravity, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini was proposed recently. The dynamically equivalent scalar-tensor representation of the model was also formulated, and it was shown that even if the scalar field is very light, the theory passes the Solar System observational constraints. Therefore the model predicts the existence of a long-range scalar field, modifying the cosmological and galactic dynamics. An explicit model that passes the local tests and leads to cosmic acceleration was also obtained. In the present work, it is shown that the theory can be also formulated in ter…

High Energy Physics - TheoryCosmology and Nongalactic Astrophysics (astro-ph.CO)General relativitymedia_common.quotation_subjectScalar (mathematics)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesCosmologyGeneral Relativity and Quantum CosmologyGravitationGeneral Relativity and Quantum Cosmology0103 physical sciencesdark energy theory010306 general physicsmodified gravityRicci curvatureMathematical physicsmedia_commonPhysics010308 nuclear & particles physicsAstronomy and AstrophysicsUniverseHigh Energy Physics - Theory (hep-th)Dark energyScalar fieldAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Wormholes supported by hybrid metric-Palatini gravity

2012

Recently, a modified theory of gravity was presented, which consists of the superposition of the metric Einstein-Hilbert Lagrangian with an $f(\cal R)$ term constructed \`{a} la Palatini. The theory possesses extremely interesting features such as predicting the existence of a long-range scalar field, that explains the late-time cosmic acceleration and passes the local tests, even in the presence of a light scalar field. In this brief report, we consider the possibility that wormholes are supported by this hybrid metric-Palatini gravitational theory. We present here the general conditions for wormhole solutions according to the null energy conditions at the throat and find specific examples…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)High Energy Physics - TheoryNuclear and High Energy Physics010308 nuclear & particles physicsScalar theories of gravitationFOS: Physical sciencesVacuum solutionGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationsymbols.namesakeGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)0103 physical sciencessymbolsf(R) gravityWormhole010306 general physicsAstrophysics - High Energy Astrophysical PhenomenaKlein–Gordon equationScalar fieldAsymptotically flat spacetimeMathematical physics
researchProduct

Galactic rotation curves in hybrid metric-Palatini gravity

2013

Generally, the dynamics of test particles around galaxies, as well as the corresponding mass deficit, is explained by postulating the existence of a hypothetical dark matter. In fact, the behavior of the rotation curves shows the existence of a constant velocity region, near the baryonic matter distribution, followed by a quick decay at large distances. In this work, we consider the possibility that the behavior of the rotational velocities of test particles gravitating around galaxies can be explained within the framework of the recently proposed hybrid metric-Palatini gravitational theory. The latter is constructed by modifying the metric Einstein-Hilbert action with an f(R) term in the P…

High Energy Physics - TheoryModified gravityMass deficitDark matterFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationGeneral Relativity and Quantum Cosmology0103 physical sciencesDark matterSurface brightness010303 astronomy & astrophysicsGalaxy rotation curvePhysics010308 nuclear & particles physicsAstronomy and AstrophysicsObservableGalactic rotation curvesAstrophysics - Astrophysics of GalaxiesGalaxyComputational physicsClassical mechanicsHigh Energy Physics - Theory (hep-th)Astrophysics of Galaxies (astro-ph.GA)Scalar field
researchProduct