0000000000538429
AUTHOR
Pierre Lambelet
Analysis of eicosapentaenoic and docosahexaenoic acid geometrical isomers formed during fish oil deodorization.
International audience; Addition of long-chain polyunsaturated fatty acids (LC-PUFAs) from marine oil into food products implies preliminary refining procedures of the oil which thermal process affects the integrity of LC-PUFAs. Deodorization, the major step involving high temperatures, is a common process used for the refining of edible fats and oils. The present study evaluates the effect of deodorization temperature on the formation of LC-PUFA geometrical isomers. Chemically isomerized eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were used as reference samples. Fish oil samples have been deodorized at 180, 220 and 250 °C for 3 h and pure EPA and DHA fatty acid methyl esters…
Thermal degradation of long-chain polyunsatured fatty acids during deodorization of fish oil
International audience; Long-chain polyunsaturated fatty acids (LC-PUFA) of the n-3 series, particularly eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid, have specific activities especially in the functionality of the central nervous system. Due to the occurrence of numerous methylene-interrupted ethylenic double bonds, these fatty acids are very sensitive to air (oxygen) and temperature. Non-volatile degradation products, which include polymers, cyclic fatty acid monomers (CFAM) and geometrical isomers of EPA and DHA, were evaluated in fish oil samples obtained by deodorization under vacuum of semi-refined fish oil at 180, 220 and 250 °C. Polymers are the major degradation products g…
Detection of lactobacillic acid in low erucic rapeseed oil--A note of caution when quantifying cyclic fatty acid monomers in vegetable oils.
International audience; The purpose of this work was to identify an unknown component which has been detected during the analysis of cyclic fatty acid monomers (CFAMs) in low erucic acid rapeseed oils (LEAR). A sample of crude LEAR was transformed into fatty acid methyl esters (FAMEs) and hydrogenated using PtO2. The hydrogenated sample was fractionated by reversed-phase high-performance liquid chromatography (RP-HPLC) and the fraction containing the CFAMs transformed into picolinyl esters. Analysing these picolinyl derivatives by gas-liquid chromatography coupled to mass spectrometry (GC-MS) showed that the unknown product observed in LEAR is the 11,12-methylene-octadecanoic acid. This cyc…