0000000000540158

AUTHOR

Lina Mikoliu̅naitė

0000-0001-9520-0336

showing 3 related works from this author

Peculiarities of Phase Formation in Mn-Based Na SuperIonic Conductor (NaSICon) Systems: The Case of Na1+2xMnxTi2–x(PO4)3 (0.0 ≤ x ≤ 1.5)

2021

This project has received funding from the European Regional Development Fund (Project no. 01.2.2-LMT-K-718-02–0005) under grant agreement with the Research Council of Lithuania (LMTLT). We thank the High Performance Computing Center “HPC Saulėtekis” at the Faculty of Physics, Vilnius University, for the use of computational resources.

Electrode materialEnergyMaterials scienceGeneral Chemical EngineeringInorganic chemistrychemistry.chemical_element:NATURAL SCIENCES::Physics [Research Subject Categories]Transition metalsGeneral ChemistryManganesePhosphatePhase formationArticleConductorchemistry.chemical_compoundchemistryMaterials ChemistryFast ion conductorDiffractionElectrodesMaterialsChemistry of Materials
researchProduct

Tuning of Structural and Optical Properties of Graphene/ZnO Nanolaminates

2016

International audience; Zinc Oxide (ZnO) and graphene (G) have been extensively studied because of their unique physical properties. Here, Graphene-Zinc Oxide (G/ZnO) nanolaminates were fabricated, respectively, by chemical vapor deposition and low temperature atomic layer deposition technique. The number of obtained G/ZnO layers was tuned from 1 to 11 with a total thickness of 100 nm for all prepared nanolaminates. The structure, optical properties and interaction between G and ZnO were studied by X-ray methods, TEM, AFM, Raman and optical spectroscopy. The obtained results were interpreted and analysed taking into account strain and charge effects of graphene in G/ZnO nanostructures. We d…

PhotoluminescenceMaterials scienceOxideNanotechnology02 engineering and technologySubstrate (electronics)Chemical vapor deposition010402 general chemistry01 natural scienceslaw.inventionsymbols.namesakeAtomic layer depositionchemistry.chemical_compoundlawPhysical and Theoretical ChemistryGraphene oxide paperbusiness.industryGraphene[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergychemistrysymbolsOptoelectronics0210 nano-technologybusinessRaman spectroscopy
researchProduct

Zinc oxide nanorod based immunosensing platform for the determination of human leukemic cells.

2019

Zinc oxide (ZnO) based nanostructures owing unique physical properties – high photoluminescence, bio- compatibility and other characteristics, therefore, they attract attention as building blocks suitable for biosensor development. In this research as a target we have used human leukemic cell line IM9 (IM9). IM9 was derived from the patient with a multiple myeloma and expressed cluster of differentiation proteins СD19 on the surface of 85–95% here investigated cancer cells. As a control sample healthy human's peripheral blood mononuclear cells (PBMC) were used and the expression of CD19 protein was found only in 5–9% of these cells. Two types of antibodies labeled by f…

Monoclonal antibodymedicine.drug_class02 engineering and technologyCell SeparationMonoclonal antibody01 natural sciencesCD19Analytical ChemistryFlow cytometrychemistry.chemical_compoundHuman lymphocytesmedicineHumansFlow cytometryZnO-nanorodsFluorescein isothiocyanatePhotoluminescenceCells CulturedImmunoassayB-LymphocytesLeukemiaNanotubesCluster of differentiationmedicine.diagnostic_testbiology010401 analytical chemistryhemic and immune systemsВ-lymphoblast cells021001 nanoscience & nanotechnologyFlow CytometryMolecular biologyhumanities0104 chemical scienceschemistryCell cultureCancer cell:NATURAL SCIENCES [Research Subject Categories]biology.proteinAntibodyZinc Oxide0210 nano-technologyhuman activitiesBiomarkersTalanta
researchProduct