6533b854fe1ef96bd12aea83
RESEARCH PRODUCT
Tuning of Structural and Optical Properties of Graphene/ZnO Nanolaminates
Arie Van Der LeeZigmas BaleviciusRoman ViterAlmira RamanavicieneDamien VoiryIgor IatsunskyiDonats ErtsJana AndzaneLina Mikoliu̅naitėMikhael BechelanyEmerson CoyMargarita BaitimirovaStefan JurgaSaulius TumenasIeva BaleviciuteKarol ZałęskiArunas Ramanaviciussubject
PhotoluminescenceMaterials scienceOxideNanotechnology02 engineering and technologySubstrate (electronics)Chemical vapor deposition010402 general chemistry01 natural scienceslaw.inventionsymbols.namesakeAtomic layer depositionchemistry.chemical_compoundlawPhysical and Theoretical ChemistryGraphene oxide paperbusiness.industryGraphene[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergychemistrysymbolsOptoelectronics0210 nano-technologybusinessRaman spectroscopydescription
International audience; Zinc Oxide (ZnO) and graphene (G) have been extensively studied because of their unique physical properties. Here, Graphene-Zinc Oxide (G/ZnO) nanolaminates were fabricated, respectively, by chemical vapor deposition and low temperature atomic layer deposition technique. The number of obtained G/ZnO layers was tuned from 1 to 11 with a total thickness of 100 nm for all prepared nanolaminates. The structure, optical properties and interaction between G and ZnO were studied by X-ray methods, TEM, AFM, Raman and optical spectroscopy. The obtained results were interpreted and analysed taking into account strain and charge effects of graphene in G/ZnO nanostructures. We demonstrate that the bottom graphene used as a substrate stimulated the formation of ZnO crystalline structure. n-doping of graphene caused by charge transfer from ZnO to graphene has been detected by blue-shift of G-band of Raman spectra of the nanolaminates. ZnO photoluminescence intensity was found to be dependent on the number of graphene layers in G/ZnO nanolaminate. n-doping of graphene could be tailored by controlling the construction of the G/ZnO nanolaminates for variety of applications such as, for example, selective adsorption of the target molecules on graphene surface. Thus, G/ZnO nanolaminates may find applications in optical, bio-and chemical sensors.
year | journal | country | edition | language |
---|---|---|---|---|
2016-10-07 |