0000000000006549
AUTHOR
Almira Ramanaviciene
Photoluminescence immunosensor based on bovine leukemia virus proteins immobilized on the ZnO nanorods
Bovine leukaemia virus (BLV) proteins gp51, which are serving as antigens for specific antibodies against BLV proteins (anti-gp51), were applied as biological recognition part in the design of immunosensor devoted for the determination of anti-gp51. The efficiency of the immobilization of BLV proteins gp51 on ZnO nanorod (ZnO- NR) modified glass (ZnO-NR/glass) surface was evaluated. The formation of antigen-antibody complex on the ZnO/glass modified by the BLV proteins gp51 (gp51/ZnO-NR/glass) was investigated by the determination of changes in ZnO photoluminescence. The applicability of gp51/ZnO-NR/glass in the design of photoluminescence based immunosensor was evaluated. Bovine serum albu…
Affinity Sensors for the Diagnosis of COVID-19
The coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was proclaimed a global pandemic in March 2020. Reducing the dissemination rate, in particular by tracking the infected people and their contacts, is the main instrument against infection spreading. Therefore, the creation and implementation of fast, reliable and responsive methods suitable for the diagnosis of COVID-19 are required. These needs can be fulfilled using affinity sensors, which differ in applied detection methods and markers that are generating analytical signals. Recently, nucleic acid hybridization, antigen-antibody interaction, and change of reactive oxyge…
Hybrid electrochemical/electrochromic Cu(II) ion sensor prototype based on PANI/ITO-electrode
Abstract Conducting polymer polyaniline (PANI) based electrochromic films were electrochemically synthesized on indium tin oxide (ITO) covered glass electrodes and their electrochromic performances were investigated by spectroscopic methods before and after the incubation in Cu(II) ion containing aqueous solution. Chemical structure of synthesized PANI layer was evaluated by FTIR. The electrochromic performance of PANI film was determined by measuring of spectroscopic signals before and after the incubation of PANI film coated electrode in Cu(II) ion containing solution. During the change of potential, which was applied to PANI-modified electrode, the colour of PANI thin film turned from gr…
Biosensors for the determination of SARS-CoV-2 virus and diagnosis of COVID-19 infection
Monitoring and tracking infection is required in order to reduce the spread of the coronavirus disease 2019 (COVID-19), induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To achieve this goal, the development and deployment of quick, accurate, and sensitive diagnostic methods are necessary. The determination of the SARS-CoV-2 virus is performed by biosensing devices, which vary according to detection methods and the biomarkers which are inducing/providing an analytical signal. RNA hybridisation, antigen-antibody affinity interaction, and a variety of other biological reactions are commonly used to generate analytical signals that can be precisely detected using electro…
ZnO/polyaniline composite based photoluminescence sensor for the determination of acetic acid vapor
In this study, we report a novel ZnO/polyaniline (PANI) nanocomposite optical gas sensor for the determination of acetic acid at room temperatures. ZnO nanorods, synthesized in powder form were coated by PANI (ZnO/ PANI) by chemical polymerization method. The obtained nanocomposites were deposited on glass substrate and dried overnight at room temperature. Structure and optical properties of ZnO/PANI nanocomposite have been studied by using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, diffuse reflectance and photoluminescence spectroscopy. Tests towards acetic acids were performed in the range of concentrations 1–13 ppm. The adsorption of acetic a…
Porous Aluminium Oxide Coating for the Development of Spectroscopic Ellipsometry Based Biosensor: Evaluation of Human Serum Albumin Adsorption
An electrochemically synthesised porous anodic aluminium oxide (pAAO) layer has been analysed by means of spectroscopic ellipsometry. The determined thickness of the formed pAAO layer obtained from spectroscopic ellipsometry measurements and modelling was 322.75 ±
Analytical, thermodynamical and kinetic characteristics of photoluminescence immunosensor for the determination of Ochratoxin A
Ochratoxin A (OTA) is one of the most widespread and dangerous food contaminants. Therefore, rapid, label-free and precise detection of low OTA concentrations requires novel sensing elements with advanced bio-analytical properties. In the present paper we report photoluminescence (PL) based immunosensor for the detection of OTA. During the development of immunosensor photoluminescent ZnO nanorods (ZnO-NRs) were deposited on glass substrate. Then the ZnO-NRs were silanized and covalently modified by Protein-A (Glass/ZnO-NRs/Protein-A). The latest structure was modified by antibodies against OTA (Anti-OTA) in order to form OTA-selective layer (Glass/ZnO-NRs/Protein-A/Anti-OTA). In order to im…
Tuning of Structural and Optical Properties of Graphene/ZnO Nanolaminates
International audience; Zinc Oxide (ZnO) and graphene (G) have been extensively studied because of their unique physical properties. Here, Graphene-Zinc Oxide (G/ZnO) nanolaminates were fabricated, respectively, by chemical vapor deposition and low temperature atomic layer deposition technique. The number of obtained G/ZnO layers was tuned from 1 to 11 with a total thickness of 100 nm for all prepared nanolaminates. The structure, optical properties and interaction between G and ZnO were studied by X-ray methods, TEM, AFM, Raman and optical spectroscopy. The obtained results were interpreted and analysed taking into account strain and charge effects of graphene in G/ZnO nanostructures. We d…
Zinc oxide nanorod based immunosensing platform for the determination of human leukemic cells.
Zinc oxide (ZnO) based nanostructures owing unique physical properties – high photoluminescence, bio- compatibility and other characteristics, therefore, they attract attention as building blocks suitable for biosensor development. In this research as a target we have used human leukemic cell line IM9 (IM9). IM9 was derived from the patient with a multiple myeloma and expressed cluster of differentiation proteins СD19 on the surface of 85–95% here investigated cancer cells. As a control sample healthy human's peripheral blood mononuclear cells (PBMC) were used and the expression of CD19 protein was found only in 5–9% of these cells. Two types of antibodies labeled by f…
Scanning electrochemical microscopy and electrochemical impedance spectroscopy-based characterization of perforated polycarbonate membrane modified by carbon-nanomaterials and glucose oxidase
Abstract In this research, scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy (EIS) were applied for the evaluation of surface characteristics of electrochemical (amperometric) biosensor based on two composite structures consisting of perforated polycarbonate membrane modified by carbon-nanomaterials and glucose oxidase. The first structure consisted of the polycarbonate filter membrane, punctured by 400 nm holes (PCM) consequently modified with single walled carbon nanotubes (SWCNT) and graphene oxide (GO) layer (PCM/SWCNT/GO); and the other structure consisted of the same PCM, consequently modified with SWCNT and reduced graphene oxide (rGO) layer (PCM/S…
Photoelectrochemical Bisphenol S Sensor Based on ZnO‐Nanoroads Modified by Molecularly Imprinted Polypyrrole
Molecularly imprinted polymers are important tools for the design of sensors and other molecular recognition based analytical systems. In this paper the development of a photoelectrochemical sensor for selective bisphenol determination is reported. The sensor is based on a glass/ZnO/MIP‐Ppy structure consisting of glass modified by a ZnO layer (glass/ZnO), which is functionalized by molecularly imprinted conducting polymer polypyrrole (MIP‐Ppy). The sensitivity of the sensor to bisphenol is in the range of 0.7–12.5 µm. Selectivity tests to other bisphenolic compounds are performed. Some aspects of a photoinduced response mechanism in glass/ZnO/MIP‐Ppy nanostructures are predicte…