6533b7d9fe1ef96bd126d6eb
RESEARCH PRODUCT
Photoluminescence immunosensor based on bovine leukemia virus proteins immobilized on the ZnO nanorods
Zigmas BaleviciusN. StarodubDaniels JevdokimovsSaulius TumenasMaryna SavchukMaryna SavchukRoman ViterRoman ViterArunas RamanaviciusIgor IatsunskyiAlmira RamanavicieneDonats Ertssubject
PhotoluminescenceAntigen-antibody complexBovine leukemia virus (BLV)ZnO nanorods02 engineering and technology010402 general chemistry01 natural sciencesMaterials ChemistryElectrical and Electronic EngineeringBovine serum albuminInstrumentationPhotoluminescencechemistry.chemical_classificationOptical immunosensorBovine leukemia virusbiologyChemistryBiomoleculeMetals and Alloys021001 nanoscience & nanotechnologyCondensed Matter Physicsbiology.organism_classification0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsbiology.protein:NATURAL SCIENCES [Research Subject Categories]Nanorod0210 nano-technologySelectivityLayer (electronics)Polyallylamine hydrochlorideNuclear chemistrydescription
Bovine leukaemia virus (BLV) proteins gp51, which are serving as antigens for specific antibodies against BLV proteins (anti-gp51), were applied as biological recognition part in the design of immunosensor devoted for the determination of anti-gp51. The efficiency of the immobilization of BLV proteins gp51 on ZnO nanorod (ZnO- NR) modified glass (ZnO-NR/glass) surface was evaluated. The formation of antigen-antibody complex on the ZnO/glass modified by the BLV proteins gp51 (gp51/ZnO-NR/glass) was investigated by the determination of changes in ZnO photoluminescence. The applicability of gp51/ZnO-NR/glass in the design of photoluminescence based immunosensor was evaluated. Bovine serum albumin (BSA) was applied for the modification of sensing gp51 layer in order to form gp51&BSA layer with advanced selectivity. Polyallylamine hydrochloride (PAH) was applied in order to improve the immobilization of gp51 and BSA based sensing layer (gp51&BSA) on the surface of ZnO-NR/glass. PAH was applied during the formation of gp51&BSA/PAH/ZnO-NR/glass structure. Some aspects of the mechanism of interaction between biomolecules (gp51, BSA and anti-gp51) and ZnO-NR during the preparation and action of gp51&BSA/ZnO-NR/glass- and gp51&BSA/PAH/ZnO-NR/glass-based im- munosensors have been discussed.
year | journal | country | edition | language |
---|---|---|---|---|
2019-04-01 | Sensors and Actuators B: Chemical |