0000000000006540

AUTHOR

Arunas Ramanavicius

0000-0002-0885-3556

Optical properties of ultrathin Al2O3/ZnO nanolaminates

Abstract Because of their high resistance against ultraviolet and high energy particles, ultrathin amorphous nanolaminates can be very attractive for aerospace application. Here we report on the optical and structural properties of ultrathin Al2O3/ZnO nanolaminates deposited by Atomic Layer Deposition. Structural properties of nanolaminates were studied by GIXRD and AFM. Optical characterization was performed by transmittance, spectroscopic ellipsometry and photoluminescence (PL) spectroscopy. Regression analysis of ellipsometric spectra has shown that absorption peak decreases and blue shifted with the decrease of bilayer thickness in the stack. On the basis of the analysis of structural a…

research product

Tuning Optical Properties of Al 2 O 3 /ZnO Nanolaminates Synthesized by Atomic Layer Deposition

Nanolaminates are of great interest for their unique properties such as high dielectric constants and advanced mechanical, electrical, and optical properties. Here we report on the tuning of optical and structural properties of Al2O3/ZnO nanolaminates designed by atomic layer deposition (ALD). Structural properties of nanolaminates were studied by SEM, GIXRD, and AFM. Optical characterization was performed by transmittance and photoluminescence (PL) spectroscopy. Complex study of monolayer properties was performed by ellipsometry. Optical constants for Al2O3 and ZnO monolayer were calculated. The band gap of ZnO single layers and the excitonic PL peak position were shifted to the UV region …

research product

Enhancement of Electronic and Optical Properties of ZnO/Al2O3 Nanolaminate Coated Electrospun Nanofibers

International audience; Nanolaminates are new class of promising nanomaterials with outstanding properties. Here we explored on the tuning of structural properties and the enhancement of electronic and optical properties of 1D PAN ZnO/Al2O3 nanolaminates designed by atomic layer deposition (ALD) and electrospinning. The influence of ZnO/Al2O3 bilayer thicknesses on the fundamental properties of 1D PAN ZnO/Al2O3 nanolaminates has been investigated. Due to the quantum confinement effect, the shift of XPS peaks to higher energies has been observed. Work function of Al2O3 was mostly independent of the bilayers number, whereas the ZnO work function decreased with an increase of the bilayer numbe…

research product

Photoluminescence immunosensor based on bovine leukemia virus proteins immobilized on the ZnO nanorods

Bovine leukaemia virus (BLV) proteins gp51, which are serving as antigens for specific antibodies against BLV proteins (anti-gp51), were applied as biological recognition part in the design of immunosensor devoted for the determination of anti-gp51. The efficiency of the immobilization of BLV proteins gp51 on ZnO nanorod (ZnO- NR) modified glass (ZnO-NR/glass) surface was evaluated. The formation of antigen-antibody complex on the ZnO/glass modified by the BLV proteins gp51 (gp51/ZnO-NR/glass) was investigated by the determination of changes in ZnO photoluminescence. The applicability of gp51/ZnO-NR/glass in the design of photoluminescence based immunosensor was evaluated. Bovine serum albu…

research product

Affinity Sensors for the Diagnosis of COVID-19

The coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was proclaimed a global pandemic in March 2020. Reducing the dissemination rate, in particular by tracking the infected people and their contacts, is the main instrument against infection spreading. Therefore, the creation and implementation of fast, reliable and responsive methods suitable for the diagnosis of COVID-19 are required. These needs can be fulfilled using affinity sensors, which differ in applied detection methods and markers that are generating analytical signals. Recently, nucleic acid hybridization, antigen-antibody interaction, and change of reactive oxyge…

research product

Tailoring the Structural, Optical, and Photoluminescence Properties of Porous Silicon/TiO2 Nanostructures

The structural, optical, and photoluminescence properties of porous silicon (PSi)/titanium dioxide (TiO2) nanostructures were investigated. PSi structures consisting of macro- and mesoporous layers were fabricated by metal-assisted chemical etching, and then TiO2 was introduced inside the PSi matrix using the atomic layer deposition technique. We performed scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction, energy dispersive X-ray spectroscopy, Raman spectroscopy, ellipsometry, and photoluminescence (PL) spectroscopy to characterize the prepared and annealed PSi/TiO2 nanostructures. TEM and Raman analyses revealed that TiO2 had a crystalline anatase stru…

research product

Optical properties of ZnO deposited by atomic layer deposition (ALD) on Si nanowires

International audience; In this work, we report proof-of-concept results on the synthesis of Si core/ ZnO shell nanowires (SiNWs/ZnO) by combining nanosphere lithography (NSL), metal assisted chemical etching (MACE) and atomic layer deposition (ALD). The structural properties of the SiNWs/ZnO nanostructures prepared were investigated by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopies. The X-ray diffraction analysis revealed that all samples have a hexagonal wurtzite structure. The grain sizes are found to be in the range of 7-14 nm. The optical properties of the samples were investigated using reflectance and photoluminescence spectroscopy. The study o…

research product

Photoluminescence ZnO nanorod biosensors for medical and food safety applications

Photoluminescence (PL) ZnO nanorods (NR) are prospect materials for biosensor applications. They can be deposited on solid state substrates and/or dispersed in liquid media. ZnO NRs demonstrate strong UV emission (3.28–3.3 eV), which depends on surface charge, formed by adsorbed molecules. In the present work we report on ZnO NRs, deposited on glass slides, used as biosensor templates for detection food pathogens. Change of ZnO PL after interaction with biomolecules was recorded. Dependence of PL intensity vs concentration of biomolecules was obtained. In the second part, ZnO nanorods were used as PL biomarkers. A suspension of ZnO NRs, conjugated with SSEA-4 antibodies (aSSEA-4) in PBS buf…

research product

Gold coated porous silicon nanocomposite as a substrate for photoluminescence-based immunosensor suitable for the determination of Aflatoxin B1.

Abstract A rapid and low cost photoluminescence (PL) immunosensor for the determination of low concentrations of Aflatoxin B1 (AFB1) has been developed. This immunosensor was based on porous silicon (PSi) covered by thin gold layer (Au) and modified by antibodies against AFB1 (anti-AFB1). PSi layer was formed on silicon substrate, then the surface of PSi was covered by 30 nm layer of gold (PSi/Au) using electrochemical and chemical deposition methods and in such ways PSi/Au (El.) and PSi/Au (Chem.) structures were formed, respectively. In order to find PSi/Au the most efficiently suitable for PL-based sensor design, structure several different PSi/Au (El.) and PSi/Au (Chem.) structures were…

research product

Influence of PDA Coating on the Structural, Optical and Surface Properties of ZnO Nanostructures

Polydopamine (PDA) is a new biocompatible material, which has prospects in biomedical and sensor applications. Due to functional groups, it can host wide range of biomolecules. ZnO nanostructures are well known templates for optical sensors and biosensors. The combination of ZnO and PDA results in a change of optical properties of ZnO&ndash

research product

The influence of localized plasmons on the optical properties of Au/ZnO nanostructures

Optical and structural experiments have been carried out on Si/ZnO thin films modified with ultra-thin gold layers of different thicknesses. ZnO was produced via Atomic Layer Deposition (ALD) and Au via Physical Vapor Deposition (sputtering). The structural properties of nanostructures were studied by XRD and AFM. Optical characterization was performed by absorbance, photoluminescence (PL) and spectroscopic ellipsometry (SE). A transition from cluster-to-thin films with the increase of Au thickness has been revealed from an analysis of optical and structural parameters. The analysis of optical features of the system has shown that slight changes of the localized plasmon absorption peaks in …

research product

Hybrid electrochemical/electrochromic Cu(II) ion sensor prototype based on PANI/ITO-electrode

Abstract Conducting polymer polyaniline (PANI) based electrochromic films were electrochemically synthesized on indium tin oxide (ITO) covered glass electrodes and their electrochromic performances were investigated by spectroscopic methods before and after the incubation in Cu(II) ion containing aqueous solution. Chemical structure of synthesized PANI layer was evaluated by FTIR. The electrochromic performance of PANI film was determined by measuring of spectroscopic signals before and after the incubation of PANI film coated electrode in Cu(II) ion containing solution. During the change of potential, which was applied to PANI-modified electrode, the colour of PANI thin film turned from gr…

research product

Application of polydopamine functionalized zinc oxide for glucose biosensor design

Zinc oxide (ZnO) nanostructures are widely used in optical sensors and biosensors. Functionalization of these nanostructures with polymers enables optical properties of ZnO to be tailored. Polydopamine (PDA) is a highly biocompatible polymer, which can be used as a versatile coating suitable for application in sensor and biosensor design. In this research, we have grown ZnO-based nanorods on the surface of ITO-modified glass-plated optically transparent electrodes (glass/ITO). Then the deposition of the PDA polymer layer on the surface of ZnO nanorods was performed from an aqueous PDA solution in such a way glass/ITO/ZnO-PDA structure was formed. The ZnO-PDA composite was characterized by S…

research product

Biosensors for the determination of SARS-CoV-2 virus and diagnosis of COVID-19 infection

Monitoring and tracking infection is required in order to reduce the spread of the coronavirus disease 2019 (COVID-19), induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To achieve this goal, the development and deployment of quick, accurate, and sensitive diagnostic methods are necessary. The determination of the SARS-CoV-2 virus is performed by biosensing devices, which vary according to detection methods and the biomarkers which are inducing/providing an analytical signal. RNA hybridisation, antigen-antibody affinity interaction, and a variety of other biological reactions are commonly used to generate analytical signals that can be precisely detected using electro…

research product

Porous silicon based photoluminescence immunosensor for rapid and highly-sensitive detection of Ochratoxin A.

A rapid and low cost photoluminescence (PL) immunosensor for the determination of low concentrations of Ochratoxin A (OTA) has been developed. This immunosensor was based on porous silicon (PSi) and modified by antibodies against OTA (anti-OTA). PSi layer was fabricated by metal-assisted chemical etching (MACE) procedure. Main structural parameters (pore size, layer thickness, morphology and nanograins size) and composition of PSi were investigated by means of X-Ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. PL-spectroscopy of PSi was performed at room temperature and showed a wide emission band centered at 680 ± 20nm. Protein A was covalently immobilized …

research product

ZnO/polyaniline composite based photoluminescence sensor for the determination of acetic acid vapor

In this study, we report a novel ZnO/polyaniline (PANI) nanocomposite optical gas sensor for the determination of acetic acid at room temperatures. ZnO nanorods, synthesized in powder form were coated by PANI (ZnO/ PANI) by chemical polymerization method. The obtained nanocomposites were deposited on glass substrate and dried overnight at room temperature. Structure and optical properties of ZnO/PANI nanocomposite have been studied by using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, diffuse reflectance and photoluminescence spectroscopy. Tests towards acetic acids were performed in the range of concentrations 1–13 ppm. The adsorption of acetic a…

research product

Porous Aluminium Oxide Coating for the Development of Spectroscopic Ellipsometry Based Biosensor: Evaluation of Human Serum Albumin Adsorption

An electrochemically synthesised porous anodic aluminium oxide (pAAO) layer has been analysed by means of spectroscopic ellipsometry. The determined thickness of the formed pAAO layer obtained from spectroscopic ellipsometry measurements and modelling was 322.75 &plusmn

research product

From Microorganism-Based Amperometric Biosensors towards Microbial Fuel Cells

This review focuses on the overview of microbial amperometric biosensors and microbial biofuel cells (MFC) and shows how very similar principles are applied for the design of both types of these bioelectronics-based devices. Most microorganism-based amperometric biosensors show poor specificity, but this drawback can be exploited in the design of microbial biofuel cells because this enables them to consume wider range of chemical fuels. The efficiency of the charge transfer is among the most challenging and critical issues during the development of any kind of biofuel cell. In most cases, particular redox mediators and nanomaterials are applied for the facilitation of charge transfer from a…

research product

Copper(I) Bromide: An Alternative Emitter for Blue-Colored Flame Pyrotechnics.

Copper(I) bromide was evaluated as an alternative emitter for blue flame pyrotechnic compositions. CuBr and CuCl emission spectra were recorded from a butane torch flame and compared. Cu(BrO3 )2 was synthesized and used in pyrotechnic compositions as an oxidizer and the source for the generation of CuBr species. Pyrotechnic compositions, which contained copper and potassium bromates as oxidizers, were optimized for the generation of blue flames. The experimental data, including emission spectra of the flames, chromaticity coordinates, burning rates, luminous intensities, and sensitivity tests, were analyzed and compared.

research product

Analytical, thermodynamical and kinetic characteristics of photoluminescence immunosensor for the determination of Ochratoxin A

Ochratoxin A (OTA) is one of the most widespread and dangerous food contaminants. Therefore, rapid, label-free and precise detection of low OTA concentrations requires novel sensing elements with advanced bio-analytical properties. In the present paper we report photoluminescence (PL) based immunosensor for the detection of OTA. During the development of immunosensor photoluminescent ZnO nanorods (ZnO-NRs) were deposited on glass substrate. Then the ZnO-NRs were silanized and covalently modified by Protein-A (Glass/ZnO-NRs/Protein-A). The latest structure was modified by antibodies against OTA (Anti-OTA) in order to form OTA-selective layer (Glass/ZnO-NRs/Protein-A/Anti-OTA). In order to im…

research product

Tuning of Structural and Optical Properties of Graphene/ZnO Nanolaminates

International audience; Zinc Oxide (ZnO) and graphene (G) have been extensively studied because of their unique physical properties. Here, Graphene-Zinc Oxide (G/ZnO) nanolaminates were fabricated, respectively, by chemical vapor deposition and low temperature atomic layer deposition technique. The number of obtained G/ZnO layers was tuned from 1 to 11 with a total thickness of 100 nm for all prepared nanolaminates. The structure, optical properties and interaction between G and ZnO were studied by X-ray methods, TEM, AFM, Raman and optical spectroscopy. The obtained results were interpreted and analysed taking into account strain and charge effects of graphene in G/ZnO nanostructures. We d…

research product

Zinc oxide nanorod based immunosensing platform for the determination of human leukemic cells.

Zinc oxide (ZnO) based nanostructures owing unique physical properties – high photoluminescence, bio- compatibility and other characteristics, therefore, they attract attention as building blocks suitable for biosensor development. In this research as a target we have used human leukemic cell line IM9 (IM9). IM9 was derived from the patient with a multiple myeloma and expressed cluster of differentiation proteins СD19 on the surface of 85–95% here investigated cancer cells. As a control sample healthy human's peripheral blood mononuclear cells (PBMC) were used and the expression of CD19 protein was found only in 5–9% of these cells. Two types of antibodies labeled by f…

research product

Scanning electrochemical microscopy and electrochemical impedance spectroscopy-based characterization of perforated polycarbonate membrane modified by carbon-nanomaterials and glucose oxidase

Abstract In this research, scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy (EIS) were applied for the evaluation of surface characteristics of electrochemical (amperometric) biosensor based on two composite structures consisting of perforated polycarbonate membrane modified by carbon-nanomaterials and glucose oxidase. The first structure consisted of the polycarbonate filter membrane, punctured by 400 nm holes (PCM) consequently modified with single walled carbon nanotubes (SWCNT) and graphene oxide (GO) layer (PCM/SWCNT/GO); and the other structure consisted of the same PCM, consequently modified with SWCNT and reduced graphene oxide (rGO) layer (PCM/S…

research product

Toward development of optical biosensors based on photoluminescence of TiO2 nanoparticles for the detection of Salmonella

Quality control of food and agriculture production is an inseparable part of human safety and wellbeing. Salmonella infections belong to one of the most monitored pathogens in the world, therefore advanced determination of this pathogen can decrease the risks of human diseases caused by this microorganism. In this research we introduce a novel optical immunosensor for determination of Salmonella typhimurium. The immunosensor is based on Titanium dioxide (TiO2) nanoparticles deposited on glass substrates (glass/TiO2)center dot TiO2 nanoparticles exhibit an intense photoluminescence (PL) in the visible range of spectrum at room temperature. The direct immobilization of antibodies (anti-S-Ab) …

research product

Optical and structural properties of Al 2 O 3 /ZnO nanolaminates deposited by ALD method

International audience; We report on the investigation of optical and structural properties of Al2O3/ZnO nanolaminates. The nanolaminates were deposited on Si and glass substrates by Atomic layer deposition method. Structural properties of nanolaminates were studied by SEM, GIXRD, and AFM. Optical characterization was performed by transmittance and photoluminescence spectroscopy. Complex analysis of monolayer properties was done by ellipsometry. Optical constants for Al2O3 and ZnO monolayer were calculated.

research product

Whispering gallery mode resonator and glucose oxidase based glucose biosensor

Abstract In this research whispering gallery mode resonators (WGMRs) were applied in new concept of glucose sensor based on the shift of WGM resonance frequency induced by enzymatic oxidation of glucose by glucose oxidase (GOx), which was immobilized on WGM-resonator surface. During the enzymatic reaction catalyzed by GOx electrons from glucose via GOx are transferred towards co-immobilized gold nanoparticles (Au-NPs). WGM-resonators were fabricated from standard telecommunication optical-fiber melted in a hydrogen flame. Whispering gallery mode resonance based optical signals generated by these WGM-resonators were evaluated. These WGM-resonators, which were characterized by sufficient qual…

research product

Photoelectrochemical Bisphenol S Sensor Based on ZnO‐Nanoroads Modified by Molecularly Imprinted Polypyrrole

Molecularly imprinted polymers are important tools for the design of sensors and other molecular recognition based analytical systems. In this paper the development of a photoelectrochemical sensor for selective bisphenol determination is reported. The sensor is based on a glass/ZnO/MIP‐Ppy structure consisting of glass modified by a ZnO layer (glass/ZnO), which is functionalized by molecularly imprinted conducting polymer polypyrrole (MIP‐Ppy). The sensitivity of the sensor to bisphenol is in the range of 0.7–12.5 µm. Selectivity tests to other bisphenolic compounds are performed. Some aspects of a photoinduced response mechanism in glass/ZnO/MIP‐Ppy nanostructures are predicte…

research product

Influence of ZnO/graphene nanolaminate periodicity on their structural and mechanical properties

International audience; Structural, electronic and mechanical properties of ZnO/Graphene (ZnO/G) nanolaminates fabricated by low temperature atomic layer deposition (ALD) and chemical vapor deposition (CVD) were investigated. We performed scanning and transmission electron microscopy (SEM/TEM), X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), Raman spectroscopy, X-Ray photoelectron spectroscopy (XPS) and nanoindentation to characterize the ZnO/G nanolaminates. The main structural and mechanical parameters of ZnO/G nanolaminates were calculated. The obtained results were analyzed and interpreted taking into account mechanical interaction and charge effects occurring at the …

research product