0000000000541951

AUTHOR

Daniel Reith

Computer Simulation Studies of Chain Dynamics in Polymer Brushes

Center-of-mass and single monomer motion in grafted chains comprising a strongly stretched polymer brush in thermal equilibrium are studied by large scale molecular dynamics and Monte Carlo simulations of a coarse-grained model. Good solvent conditions are assumed. Our findings seriously question earlier theoretical predictions about the relaxation described by Rouse dynamics of brush coatings. Thus, the correlation functions of parallel and perpendicular components of the mean distance of the center-of-mass from the grafting site, the squared gyration radius and end-to-end distance, are found to deviate strongly from a simple exponential decay. While the relaxation times extracted from the…

research product

GPU Based Molecular Dynamics Simulations of Polymer Rings in Concentrated Solution: Structure and Scaling

We report on equilibrium properties of a concentrated solution of non-concatenated ring polymers by Molecular dynamics simulations using HooMD-blue, a fast implementation on graphics processor units (GPUs). We are able to identify the intermediate scaling regime for the radius of gyration Rg ∝ N as well as indication for a crossover to Rg ∝ N for rings with chain length N in our fully flexible off-lattice polymer model. This crossover takes place between a ring size of 2500 and 7500 monomers for monomer density ρ = 0.5. Our results are in agreement with recent studies for lattice and stiff off-lattice models and show once again that this scaling is not model dependent at all. Furthermore th…

research product

Influence of chain stiffness on knottedness in single polymers.

In the present article, we investigate and review the influence of chain stiffness on self-entanglements and knots in a single polymer chain with Monte Carlo simulations spanning good solvent, theta and globular phases. The last-named are of particular importance as a model system for DNA in viral capsids. Intriguingly, the dependence of knot occurrence and complexity with increasing stiffness is non-trivial, but can be understood with a few simple concepts outlined in the present article.

research product

Sequence Determines Degree of Knottedness in a Coarse-Grained Protein Model

Knots are abundant in globular homopolymers but rare in globular proteins. To shed new light on this long-standing conundrum, we study the influence of sequence on the formation of knots in proteins under native conditions within the framework of the hydrophobic-polar (HP) lattice protein model. By employing large scale Wang-Landau simulations combined with suitable Monte Carlo trial moves we show that, even though knots are still abundant on average, sequence introduces large variability in the degree of self-entanglements. Moreover, we are able to design sequences which are either almost always or almost never knotted. Our findings serve as proof of concept that the introduction of just o…

research product

Anomalous Structure and Scaling of Ring Polymer Brushes

A comparative simulation study of polymer brushes formed by grafting at a planar surface either flexible linear polymers (chain length $N_L$) or (non-catenated) ring polymers (chain length $N_R=2 N_L$) is presented. Two distinct off-lattice models are studied, one by Monte Carlo methods, the other by Molecular Dynamics, using a fast implementation on graphics processing units (GPUs). It is shown that the monomer density profiles $\rho(z)$ in the $z$-direction perpendicular to the surface for rings and linear chains are practically identical, $\rho_R(2 N_L, z)=\rho_L(N_L, z)$. The same applies to the pressure, exerted on a piston at hight z, as well. While the gyration radii components of ri…

research product

Complex dynamics of our economic life on different scales: insights from search engine query data.

Search engine query data deliver insight into the behaviour of individuals who are the smallest possible scale of our economic life. Individuals are submitting several hundred million search engine queries around the world each day. We study weekly search volume data for various search terms from 2004 to 2010 that are offered by the search engine Google for scientific use, providing information about our economic life on an aggregated collective level. We ask the question whether there is a link between search volume data and financial market fluctuations on a weekly time scale. Both collective ‘swarm intelligence’ of Internet users and the group of financial market participants can be rega…

research product

Effective stiffening of DNA due to nematic ordering causes DNA molecules packed in phage capsids to preferentially form torus knots.

Observation that DNA molecules in bacteriophage capsids preferentially form torus type of knots provided a sensitive gauge to evaluate various models of DNA arrangement in phage heads. Only models resulting in a preponderance of torus knots could be considered as close to reality. Recent studies revealed that experimentally observed enrichment of torus knots can be qualitatively reproduced in numerical simulations that include a potential inducing nematic arrangement of tightly packed DNA molecules within phage capsids. Here, we investigate what aspects of the nematic arrangement are crucial for inducing formation of torus knots. Our results indicate that the effective stiffening of DNA by …

research product

Spinodal decomposition of polymer solutions: molecular dynamics simulations of the two-dimensional case.

As a generic model system for phase separation in polymer solutions, a coarse-grained model for hexadecane/carbon dioxide mixtures has been studied in two-dimensional geometry. Both the phase diagram in equilibrium (obtained from a finite size scaling analysis of Monte Carlo data) and the kinetics of state changes caused by pressure jumps (studied by large scale molecular dynamics simulations) are presented. The results are compared to previous work where the same model was studied in three-dimensional geometry and under confinement in slit geometry. For deep quenches the characteristic length scale ℓ(t) of the formed domains grows with time t according to a power law close to [Formula: see…

research product