0000000000545778

AUTHOR

C Lachaud

showing 6 related works from this author

Search for High-energy Neutrinos from Gravitational Wave Event GW151226 and Candidate LVT151012 with ANTARES and IceCube

2017

[EN] The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by ANTARES, within +/- 500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission …

POINT-LIKEGravitational-wave observatoryPhysics and Astronomy (miscellaneous)[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyELECTROMAGNETIC COUNTERPARTSastro-ph.HE; astro-ph.HEAstrophysics01 natural sciences7. Clean energylocalizationIceCubeBinary black holeLIGO010303 astronomy & astrophysicsTelescopeGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEFollow-upData-acquisition systemobservatoryNeutrino detectorElectromagnetic counterpartsSIMULATIONBlack-hole mergersLigoGamma-ray burstsNeutrinoAstrophysics - High Energy Astrophysical PhenomenaHost galaxiesSimulationGravitational waveBLACK-HOLE MERGERSAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesDATA-ACQUISITION SYSTEMGravitational wavesneutrino: productionGeneral Relativity and Quantum CosmologyBinary black holeOnes gravitacionalsLiGO Observatory0103 physical sciencesNeutrinoGW151226ddc:530NeutrinsNeutrinos010306 general physicsPoint-likeANTARESCosmologiaGravitational wavebackgroundgravitational radiationAstronomy530 PhysikLIGONeutron starGravitational Waves Neutrinos Antares IceCube LIGOAntaresPhysics and Astronomyblack hole: binary13. Climate action:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]FISICA APLICADAAstronomiaDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]FOLLOW-UPPhysical Review D. Particles and Fields
researchProduct

The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays

2011

Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]010504 meteorology & atmospheric sciencesCherenkov detectorAuger ExperimentAstronomyAstrophysics::High Energy Astrophysical PhenomenaCosmic rayParticle detectorsAstrophysics01 natural sciencesCosmic RayCHERENKOV DETECTORAugerlaw.inventionlaw0103 physical sciencesCherenkov detectors; Large detector systems for particle and astroparticle physics; Particle detectorsBURSTSWATERForbush decreaseUltra-high-energy cosmic ray010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)InstrumentationMathematical Physics0105 earth and related environmental sciencesPhysicsPierre Auger ObservatoryFÍSICA DE PARTÍCULASNeutron monitorLarge detector systems for particle and astroparticle physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Cherenkov detectorsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyFísica[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Solar activtyExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicFísica nuclearParticle detectorHeliosphereJournal of Instrumentation
researchProduct

Measurement of the Proton-Air Cross Section at root s=57 TeV with the Pierre Auger Observatory

2012

We report a measurement of the proton-air cross section for particle production at the center-of-mass energy per nucleon of 57 TeV. This is derived from the distribution of the depths of shower maxima observed with the Pierre Auger Observatory: systematic uncertainties are studied in detail. Analyzing the tail of the distribution of the shower maxima, a proton-air cross section of [505±22(stat)-36+28(syst)]mb is found. © 2012 American Physical Society.

Physics and Astronomy (all)Astrophysics::High Energy Astrophysical PhenomenaSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsHigh Energy Physics::ExperimentNuclear Experiment
researchProduct

The LOFT mission concept: a status update

2016

The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolut…

X-ray timing[ SDU.ASTR.GA ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]Field of viewAstrophysics01 natural scienceslaw.inventionlawObservatorytiming010303 astronomy & astrophysicsQBPhysicsmicrochannel plates. PROPORTIONAL COUNTER ARRAYCALIBRATIONX-ray astronomyElectronic Optical and Magnetic MaterialApplied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsComputer Science Applications1707 Computer Vision and Pattern RecognitionX-ray detectorsCondensed Matter Physicscompact objectsX-ray spectroscopy[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]spectroscopyCosmic Vision[ INFO ] Computer Science [cs]Silicon detectorAstrophysics::High Energy Astrophysical PhenomenaCondensed Matter PhysicTelescopeX-rayX-ray astronomySilicon detectors; spectroscopy; timing; X-ray astronomy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic EngineeringSettore FIS/05 - Astronomia e Astrofisica0103 physical sciencesElectronic[INFO]Computer Science [cs]Optical and Magnetic MaterialsSpectral resolutionElectrical and Electronic EngineeringDETECTORta115X-ray astronomy Silicon detectors timing spectroscopy010308 nuclear & particles physicsX-ray imagingX-ray timing; X-ray spectroscopy; X-ray imaging; compact objects; X-ray detectors; microchannel plates. PROPORTIONAL COUNTER ARRAY; CALIBRATION; DETECTORApplied MathematicNeutron starQB460-466 AstrophysicsSilicon detectors; spectroscopy; timing; X-ray astronomy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringSilicon detectors; spectroscopy; timing; X-ray astronomySilicon detectorsLarge Observatory For x-ray Timing (LOFT) Large Area Detector (LAD) Wide Field Monitor (WFM) Large Area Silicon Drift Detectors (SDD)Gamma-ray burst
researchProduct

Erratum: The lateral trigger probability function for the ultra-high energy cosmic ray showers detected by the Pierre Auger Observatory (Astroparticl…

2012

The Fig. 7, originally consisting of 4 panels, was truncated in the printed version (the last panel was missing). The complete version is printed again

Astronomy and Astrophysics
researchProduct

Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

2011

The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies $E>E_{th}=5.5\times 10^{19}$ eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at $E>E_{th}$ are heavy nuclei with charge $Z$, the proton component of the sources should lead to excesses in the same regions at energies $E/Z$. We here report the lack of anisotropies in these directions at energies above $E_{th}/Z$ (for illustrative values of $Z=6,\ 13,\ 26$). If the anisotropies above $E_{th}$ are du…

ACTIVE GALACTIC NUCLEI[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]ProtonAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencescosmic ray experimentAcceleration (differential geometry)Cosmic rayultra high energy cosmic rays; cosmic ray experimentsultra high energy cosmic rays7. Clean energy01 natural sciencesultra high energy cosmic rayAugerNuclear physics0103 physical sciencesUltra-high-energy cosmic ray010306 general physicsAnisotropyNuclear ExperimentDETECTORHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatorySPECTRUM010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaCharge (physics)Astronomy and Astrophysics13. Climate actionExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearcosmic ray experimentsAstrophysics - High Energy Astrophysical PhenomenaJournal of Cosmology and Astroparticle Physics
researchProduct