0000000000548149

AUTHOR

Zheng Zhu

showing 7 related works from this author

Singularities in L^p-quasidisks

2021

We study planar domains with exemplary boundary singularities of the form of cusps. A natural question is how much elastic energy is needed to flatten these cusps; that is, to remove singularities. We give, in a connection of quasidisks, a sharp integrability condition for the distortion function to answer this question. peerReviewed

PhysicsCusp (singularity)Distortion functionPure mathematicsquasidiskmappings of integrable distortionElastic energyBoundary (topology)Of the formArticlesCuspquasiconformalConnection (mathematics)funktioteoriaPlanarcuspGravitational singularityAnnales Fennici Mathematici
researchProduct

Bi-Lipschitz invariance of planar BV- and W1,1-extension domains

2021

We prove that a bi-Lipschitz image of a planar $BV$-extension domain is also a $BV$-extension domain, and that a bi-Lipschitz image of a planar $W^{1,1}$-extension domain is again a $W^{1,1}$-extension domain.

Mathematics - Functional AnalysisMathematics - Classical Analysis and ODEsBV-extensionClassical Analysis and ODEs (math.CA)FOS: MathematicsSobolev extension46E35funktionaalianalyysiFunctional Analysis (math.FA)
researchProduct

Pointwise inequalities for Sobolev functions on generalized cuspidal domains

2022

We establish point wise inequalities for Sobolev functions on a wider class of outward cuspidal domains. It is a generalization of an earlier result by the author and his collaborators

Mathematics - Functional Analysiscuspidal domainsFOS: Mathematicspointwise inequalitySobolev functionsAstrophysics::Cosmology and Extragalactic AstrophysicsArticlesepäyhtälötfunktionaalianalyysiFunctional Analysis (math.FA)
researchProduct

Product of extension domains is still an extension domain

2018

We prove the product of the Sobolev-extension domains is still a Sobolev-extension domain.

AlgebraMathematics - Functional AnalysisMathematics::Functional AnalysisGeneral MathematicsProduct (mathematics)FOS: MathematicsMathematics::Analysis of PDEsExtension (predicate logic)MathematicsDomain (software engineering)Functional Analysis (math.FA)
researchProduct

Pointwise Inequalities for Sobolev Functions on Outward Cuspidal Domains

2019

Abstract We show that the 1st-order Sobolev spaces $W^{1,p}(\Omega _\psi ),$$1<p\leq \infty ,$ on cuspidal symmetric domains $\Omega _\psi $ can be characterized via pointwise inequalities. In particular, they coincide with the Hajłasz–Sobolev spaces $M^{1,p}(\Omega _\psi )$.

PointwisePure mathematicsMathematics::Functional AnalysisInequalityGeneral Mathematicsmedia_common.quotation_subject010102 general mathematicsMathematics::Analysis of PDEs01 natural sciencesFunctional Analysis (math.FA)Sobolev spaceMathematics - Functional Analysis0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsepäyhtälötfunktionaalianalyysiComputer Science::DatabasesMathematicsmedia_common
researchProduct

Sobolev Extension on Lp-quasidisks

2021

AbstractIn this paper, we study the Sobolev extension property of Lp-quasidisks which are the generalizations of classical quasidisks. After that, we also find some applications of this property.

Pure mathematicsSobolev extension domainsProperty (philosophy)Lp-quasidisksMathematics::Complex Variables010102 general mathematicsMathematics::Analysis of PDEs0102 computer and information sciencesExtension (predicate logic)01 natural sciencesPotential theoryfunktioteoriaSobolev spacehomeomorphism of finite distortion010201 computation theory & mathematics0101 mathematicsfunktionaalianalyysiAnalysisMathematicsPotential Analysis
researchProduct

Homeomorphisms of finite distortion : from the unit ball to cusp domains in R^{3}

2016

Riemann mapping theoremHomeomorphism of finite distortioncusp domainlocally exponential integrable
researchProduct