0000000000553797

AUTHOR

P. Gorla

Evidence of Single State Dominance in the Two-Neutrino Double-β Decay of ^{82}Se with CUPID-0.

We report on the measurement of the two-neutrino double-β decay of ^{82}Se performed for the first time with cryogenic calorimeters, in the framework of the CUPID-0 experiment. With an exposure of 9.95 kg yr of Zn^{82}Se, we determine the two-neutrino double-β decay half-life of ^{82}Se with an unprecedented precision level, T_{1/2}^{2ν}=[8.60±0.03(stat) _{-0.13}^{+0.19}(syst)]×10^{19}  yr. The very high signal-to-background ratio, along with the detailed reconstruction of the background sources allowed us to identify the single state dominance as the underlying mechanism of such a process, demonstrating that the higher state dominance hypothesis is disfavored at the level of 5.5σ.

research product

Latest results from CUPID-0

International audience; CUPID-0 is a pilot experiment in scintillating cryogenic calorimetry for the search of neutrino-less double beta decay. 26 ZnSe crystals were operated continuously in the first project phase (March 2017 - December 2018), demonstrating unprecedented low levels of background in the region of interest at the Q-value of $^{82}\rm{Se}$. From this successful experience comes a demonstration of full alpha to beta/gamma background separation, the most stringent limits on the $^{82}\rm{Se}$ neutrino-less double beta decay, as well as the most precise measurement of the $^{82}$Se half-life. After a detector upgrade, CUPID-0 began its second and last phase (June 2019 - February…

research product

Evidence of Single State Dominance in the Two-Neutrino Double- β Decay of Se82 with CUPID-0

We report on the measurement of the two-neutrino double-β decay of ^{82}Se performed for the first time with cryogenic calorimeters, in the framework of the CUPID-0 experiment. With an exposure of 9.95 kg yr of Zn^{82}Se, we determine the two-neutrino double-β decay half-life of ^{82}Se with an unprecedented precision level, T_{1/2}^{2ν}=[8.60±0.03(stat) _{-0.13}^{+0.19}(syst)]×10^{19}  yr. The very high signal-to-background ratio, along with the detailed reconstruction of the background sources allowed us to identify the single state dominance as the underlying mechanism of such a process, demonstrating that the higher state dominance hypothesis is disfavored at the level of 5.5σ.

research product