0000000000554069
AUTHOR
Pedro Martinez
Nuevos taxones para la flora de Murcia
This paper compiles 14 new records for Murcia province: Delphinium halteratum subsp. verdunense, Holcus mollis, Iberis amara, Kleinia neriifolia, Lavatera mauritanica, Lepidium ruderale, Moricandia moricandioides subsp. baetica, Oxalis tetraphylla, Orobanche santolinae, Pimpinella anisum, Senna alexandrina, Sisymbrium macroloma, Tordylium maximum.
Mitigating anticipated effects of systematic errors supports sister-group relationship between Xenacoelomorpha and Ambulacraria.
International audience; Xenoturbella and the acoelomorph worms (Xenacoelomorpha) are simple marine animals with controversial affinities. They have been placed as the sister group of all other bilaterian animals (Nephrozoa hypothesis), implying their simplicity is an ancient characteristic ]; alternatively, they have been linked to the complex Ambulacraria (echinoderms and hemichordates) in a clade called the Xenambulacraria , suggesting their simplicity evolved by reduction from a complex ancestor. The difficulty resolving this problem implies the phylogenetic signal supporting the correct solution is weak and affected by inadequate modeling, creating a misleading non-phylogenetic signal. …
Assessing the root of bilaterian animals with scalable phylogenomic methods.
A clear picture of animal relationships is a prerequisite to understand how the morphological and ecological diversity of animals evolved over time. Among others, the placement of the acoelomorph flatworms, Acoela and Nemertodermatida, has fundamental implications for the origin and evolution of various animal organ systems. Their position, however, has been inconsistent in phylogenetic studies using one or several genes. Furthermore, Acoela has been among the least stable taxa in recent animal phylogenomic analyses, which simultaneously examine many genes from many species, while Nemertodermatida has not been sampled in any phylogenomic study. New sequence data are presented here from org…
The Genome of the Sea Urchin Strongylocentrotus purpuratus
We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus , a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes.
Maristem stem cells of marine/aquatic invertebrates: from basic research to innovative applications
The “stem cells” discipline represents one of the most dynamic areas in biomedicine. While adult marine/aquatic invertebrate stem cell (MISC) biology is of prime research and medical interest, studies on stem cells from organisms outside the classical vertebrate (e.g., human, mouse, and zebrafish) and invertebrate (e.g., Drosophila, Caenorhabditis) models have not been pursued vigorously. Marine/aquatic invertebrates constitute the largest biodiversity and the widest phylogenetic radiation on Earth, from morphologically simple organisms (e.g., sponges, cnidarians), to the more complex mollusks, crustaceans, echinoderms, and protochordates. These organisms contain a kaleidoscope of MISC-type…