0000000000555578
AUTHOR
Tino Jaeger
Half-Heusler superlattices as model systems for nanostructured thermoelectrics
The efficiency of thermoelectric materials is directly related to the dimensionless figure of merit , therefore, one of the means to improve ZT is to reduce the thermal conductivity. Our research focuses on half-Heusler superlattices (SLs) and the relationship between the SL period and the thermal conductivity. The cross-plane thermal conductivity of DC-sputtered TiNiSn/HfNiSn SLs was measured by the 3 method at room temperature and a clear reduction of was achieved for all SL periods, in particular for periods smaller than 20 nm. Moreover, the thermal conductivities of TiNiSn and HfNiSn single films display reduced values compared to the literature data for bulk materials. Furthermore, we …
Thermal conductivity of thermoelectric Al-substituted ZnO thin films
ZnO:Al thin films with a low electrical resistivity were grown by magnetron sputtering on sapphire substrates. The cross-plane thermal conductivity (κ = 4.5 ± 1.3 W/mK) at room temperature is almost one order of magnitude lower than for bulk materials. The thermoelectric figure of merit ZT at elevated temperatures was estimated from in-plane power factor and the cross-plane thermal conductivity at room temperature. It is expected that the thermal conductivity drops with increasing temperature and is lower in-plane than cross-plane. Consequently, the thin film ZT is at least three times higher than for bulk samples at intermediate temperatures. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinh…
Epitaxial growth and thermoelectric properties of TiNiSn and Zr0.5Hf0.5NiSn thin films
Abstract Due to their exceptional thermoelectric properties Half-Heusler alloys like MNiSn (M = Ti,Zr,Hf) have moved into focus. The growth of single crystalline thin film TiNiSn and Zr 0.5 Hf 0.5 NiSn by dc magnetron sputtering is reported. Seebeck and resistivity measurements were performed and their dependence on epitaxial quality is shown. Seebeck coefficient, specific resistivity and power factor for Zr 0.5 Hf 0.5 NiSn at room temperature were measured to be 63 μV K − 1 , 14.1 μΩ m and 0.28 mW K − 2 m − 1 , respectively. Multilayers of TiNiSn and Zr 0.5 Hf 0.5 NiSn are promising candidates to increase the thermoelectric figure-of-merit by decreasing thermal conductivity perpendicular …
Thermal conductivity of half-Heusler superlattices
Thin films and superlattices (SLs) of TiNiSn and ZrHfNiSn layers have been grown by dc magnetron sputtering on MgO (100) substrates to reduce the thermal conductivity, aiming for improvement of the thermoelectric figure of merit ZT. The thermal conductivity of 1 Wm−1K−1 was measured by the differential 3ω method for an SL with a periodicity of 8.8 nm. In addition to x-ray diffraction analysis of the SL crystal structure, smooth interfaces were confirmed by scanning/transmission electron microscopy.
Reduced thermal conductivity of TiNiSn/HfNiSn superlattices
Diminution of the thermal conductivity is a crucial aspect in thermoelectric research. We report a systematic and significant reduction of the cross-plane thermal conductivity in a model system consisting of DC sputtered TiNiSn and HfNiSn half-Heusler superlattices. The reduction of $\kappa$ is measured by the 3$\omega$ method and originates from phonon scattering at the internal interfaces. Heat transport in the superlattices is calculated based on Boltzmann transport theory, including a diffusive mismatch model for the phonons at the internal interfaces. Down to superlattice periodicity of 3 nm the phonon spectrum mismatch between the superlattice components quantitatively explains the re…