0000000000568099
AUTHOR
Joan Soto
Quarkonium suppression in heavy-ion collisions: an open quantum system approach
We address the evolution of heavy-quarkonium states in an expanding quark-gluon plasma by implementing effective field theory techniques in the framework of open quantum systems. In this setting we compute the nuclear modification factors for quarkonia that are $S$-wave Coulombic bound states in a strongly-coupled quark-gluon plasma. The calculation is performed at an accuracy that is leading-order in the heavy-quark density expansion and next-to-leading order in the multipole expansion. The quarkonium density-matrix evolution equations can be written in the Lindblad form, and, hence, they account for both dissociation and recombination. Thermal mass shifts, thermal widths and the Lindblad …
Heavy quarkonium suppression in a fireball
We perform a comprehensive study of the time evolution of heavy-quarkonium states in an expanding hot QCD medium by implementing effective field theory techniques in the framework of open quantum systems. The formalism incorporates quarkonium production and its subsequent evolution in the fireball including quarkonium dissociation and recombination. We consider a fireball with a local temperature that is much smaller than the inverse size of the quarkonium and much larger than its binding energy. The calculation is performed at an accuracy that is leading-order in the heavy-quark density expansion and next-to-leading order in the multipole expansion. Within this accuracy, for a smooth varia…