0000000000583108

AUTHOR

Marta Markowska

showing 7 related works from this author

Graphene coating obtained in a cold-wall CVD process on the Co-Cr Alloy (L-605) for medical applications

2021

Graphene coating on the cobalt-chromium alloy was optimized and successfully carried out by a cold-wall chemical vapor deposition (CW-CVD) method. A uniform layer of graphene for a large area of the Co-Cr alloy (discs of 10 mm diameter) was confirmed by Raman mapping coated area and analyzing specific G and 2D bands

ErythrocytesMicroscopeScanning electron microscope02 engineering and technologyChemical vapor deposition01 natural scienceslaw.inventionlcsh:ChemistryMiceCoated Materials BiocompatibleCoatinglawMaterials TestingComposite materiallcsh:QH301-705.5SpectroscopySettore CHIM/02 - Chimica Fisicagraphene coating ; biocompatibility ; cobalt chromium alloy ; cold wall chemical vapor deposition methodGeneral Medicine021001 nanoscience & nanotechnologyMicrostructureBlood Coagulation FactorsComputer Science ApplicationsGraphitePartial Thromboplastin TimeBiocompatibility0210 nano-technologyLayer (electronics)Blood PlateletsMaterials scienceCell SurvivalSurface PropertiesPrimary Cell Cultureengineering.material010402 general chemistryCobalt-chromium alloyGraphene coatingCold-wall chemical vapor deposition methodArticleCatalysisInorganic ChemistryAnimalsHumansPhysical and Theoretical ChemistryMolecular BiologyGrapheneOrganic Chemistrytechnology industry and agricultureNanoindentationPlatelet Activation0104 chemical scienceslcsh:Biology (General)lcsh:QD1-999NIH 3T3 CellsengineeringChromium AlloysVolatilization
researchProduct

Effect of Ce3+ concentration on persistent luminescence of YAGG:Ce3+,Cr3+,Nd3+ nanophosphors obtained by the co-precipitation method

2020

Abstract Synthesis of Y3Al2Ga3O12 garnet (YAGG) nanophosphors co-doped with Ce3+, Cr3+, and Nd3+ ions by co-precipitation is reported. The effect of Ce3+ concentration on the structure of garnet and on optical properties including persistent luminescence was investigated. The X-ray diffraction measurements showed that single garnet phase was obtained. The contraction of the crystallites size was observed with increasing the cerium concentration. The combined emission of three used co-dopants together allows to extend persistent luminescence spectral range. The photoluminescence, excitation and persistent luminescence spectra were collected and the optimal Ce3+ concentration for the highest …

Materials sciencePhotoluminescencePersistent luminescenceThermoluminescenceCoprecipitationAnalytical chemistrychemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesThermoluminescenceSpectral lineIonInorganic ChemistryRare-earthsPersistent luminescenceYAGG nanophosphorsElectrical and Electronic EngineeringPhysical and Theoretical ChemistrySpectroscopyOrganic Chemistry021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsCeriumchemistryCrystallite0210 nano-technologyCo-precipitationOptical Materials
researchProduct

Graphene Oxide Carboxymethylcellulose Nanocomposite for Dressing Materials.

2020

Sore, infected wounds are a major clinical issue, and there is thus an urgent need for novel biomaterials as multifunctional constituents for dressings. A set of biocomposites was prepared by solvent casting using different concentrations of carboxymethylcellulose (CMC) and exfoliated graphene oxide (Exf-GO) as a filler. Exf-GO was first obtained by the strong oxidation and exfoliation of graphite. The structural, morphological and mechanical properties of the composites (CMCx/Exf-GO) were evaluated, and the obtained composites were homogenous, transparent and brownish in color. The results confirmed that Exf-GO may be homogeneously dispersed in CMC. It was found that the composite has an i…

Materials scienceComposite numberOxide02 engineering and technology010402 general chemistry01 natural scienceslcsh:TechnologyArticlelaw.inventionmedical deviceschemistry.chemical_compoundbiocompatibilitylawGeneral Materials ScienceGraphitelcsh:Microscopygraphene oxide nanocompositeSettore CHIM/02 - Chimica Fisicalcsh:QC120-168.85carboxymethyl celluloseNanocompositelcsh:QH201-278.5Graphenelcsh:T021001 nanoscience & nanotechnologyCastingExfoliation joint0104 chemical sciencesSolventSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryChemical engineeringlcsh:TA1-2040lcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials (Basel, Switzerland)
researchProduct

Particle size-related limitations of persistent phosphors based on the doped Y3Al2Ga3O12 system

2021

AbstractCo-doped Ce3+, Cr3+ and Pr3+ yttrium–aluminium–gallium garnet powders of various sizes were obtained by co-precipitation method. The microstructure and morphology were investigated by XRPD, TEM and gas porosimetry. The luminescence properties were studied by excitation and emission spectra, quantum yield and decay times. Thermoluminescence measurements were performed to evaluate the activation energy, traps redistribution and frequency factor. Limitation in the energy transfer between dopant ions in the small particles, traps depth and surface defects were considered and investigated as responsible for the quenching of persistent luminescence. The phosphors annealed at 1100 °C show …

QuenchingMultidisciplinaryMaterials scienceDopantScienceDopingQAnalytical chemistryRPhysics::OpticsPhosphor02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesThermoluminescence0104 chemical sciencesCondensed Matter::Materials SciencePersistent luminescenceyttrium–aluminium–gallium garnet Persistent Luminescence PraseodimiumPhysics::Atomic and Molecular ClustersMedicineParticle size0210 nano-technologyLuminescence
researchProduct

Effect of annealing temperature on persistent luminescence of Y3Al2Ga3O12:Cr3+ co-doped with Ce3+ and Pr3+

2021

Abstract Y3(Al,Ga)5O12 (YAGG) materials doped with Ce3+, Cr3+ and Pr3+ were synthesized by using a modified Pechini method and subsequently annealed in air at selected temperatures between 900 and 1500 °C. According to X-ray powder diffraction (XRPD) and transmission electron microscopy (TEM) analyses, the particles and size distributions become large and broad, respectively, due to sintering and agglomeration at high annealing temperatures. Based on infrared (FTIR) spectra and calculation of multi-phonon de-excitation probabilities, the high energy O–H vibrations are not causing significant multi-phonon de-excitation of the emitting 5d level of Ce3+ if the annealing temperature is above 90…

ChromiumPhotoluminescenceMaterials sciencePersistent luminescenceAnnealing (metallurgy)GarnetOrganic ChemistryDopingAnalytical chemistryCeriumAnnealing temperatureAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsInorganic ChemistryPersistent luminescenceEnergy transferCharge carrierPhotoluminescence excitationElectrical and Electronic EngineeringPhysical and Theoretical ChemistryLuminescenceSpectroscopyPowder diffractionOptical Materials
researchProduct

Optical studies of Y3(Al,Ga)5O12:Ce3+,Cr3+,Nd3+ nano-phosphors obtained by the Pechini method

2019

The Y-3(Al,Ga)(5)O-12:Ce3+,Cr3+,Nd3+ (YAGG) nano-phosphors with homogeneous particle-size distribution, low aggregation and average crystalline size of about 65 nm were obtained using a modified Pechini method. Only slight aggregation of the crystallites occurs after post-annealing at 1100 degrees C. The intense Ce3+ bands in the excitation spectra of the Ce3+,Cr3+,Nd3+ co-doped materials monitoring the Cr3+ emission at 690 nm indicate energy transfer from Ce(3+ )to Cr3+. Weak Nd3+ lines are observed, as well. In addition, the emission of Nd3+ at 1060 nm with excitation of Ce3+ and Cr3+ confirms the Ce3+/Cr3+ to Nd3+ energy transfer. The short average luminescence decay times for the Ce3+ e…

Materials scienceThermoluminescence3+Analytical chemistryPhosphor02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesThermoluminescenceCe0104 chemical sciencesPersistent luminescenceGeochemistry and PetrologyHomogeneousRare earthNano-NIR persistent luminescenceNano-phosphorCrystallite0210 nano-technologyLuminescenceExcitationSettore CHIM/02 - Chimica FisicaJournal of Rare Earths
researchProduct

Urea Glass Route as a Way to Optimize YAGG:Ce3+,Cr3+,Pr3+ Nanocrystals for Persistent Luminescence Applications

2022

A new approach for the synthesis of Y3Al2Ga3O12 (YAGG) nanophosphors allowing the preparation of crystallites with sizes starting from 45 nm is presented. The controllability of the energy and trap density of the resulting material samples by annealing temperature was confirmed by thermoluminescence (TL) measurements. It has been shown that the annealing of samples at temperatures up to 1300 degrees C does not cause any substantial growth of crystallites, still remaining below 100 nm, but leads to changes in the activation energy of the persistent luminescence (PersL) process. On the other hand, annealing above 1400 degrees C results in grain growth on the submicron scale, which was confirm…

YAGG:Ce3+Cr3+Pr3+ElectrochemistryGeneral Materials ScienceSurfaces and InterfacesCondensed Matter PhysicsSpectroscopypersistent luminescence urea glass route nanoparticles
researchProduct