0000000000583255
AUTHOR
Tapio T. Rantala
Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method.
Electronic structure calculations have become an indispensable tool in many areas of materials science and quantum chemistry. Even though the Kohn-Sham formulation of the density-functional theory (DFT) simplifies the many-body problem significantly, one is still confronted with several numerical challenges. In this article we present the projector augmented-wave (PAW) method as implemented in the GPAW program package (https://wiki.fysik.dtu.dk/gpaw) using a uniform real-space grid representation of the electronic wavefunctions. Compared to more traditional plane wave or localized basis set approaches, real-space grids offer several advantages, most notably good computational scalability an…
Diamagnetic susceptibility from a nonadiabatic path-integral simulation of few-electron systems
Diamagnetism is the response of dynamical compositions of charged particles, electrons, and nuclei, to an incident magnetic field. In this paper, we study how the finite temperature and finite nuclear masses affect the diamagnetic susceptibilities of selected small atoms and molecules, as limiting cases of dilute gas. We use nonrelativistic path-integral Monte Carlo simulation (PIMC), where both electrons and nuclei are treated on equal footing at finite temperatures in sampling exact Coulomb pair density matrices. The PIMC estimator of diamagnetic susceptibility has been briefly introduced in Ceperley [D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)], but here we present a comprehensive der…
Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations
We observe using ab initio methods that localized surface plasmon resonances in icosahedral silver nanoparticles enter the asymptotic region already between diameters of 1 and 2 nm, converging close to the classical quasistatic limit around 3.4 eV. We base the observation on time-dependent density-functional theory simulations of the icosahedral silver clusters Ag$_{55}$ (1.06 nm), Ag$_{147}$ (1.60 nm), Ag$_{309}$ (2.14 nm), and Ag$_{561}$ (2.68 nm). The simulation method combines the adiabatic GLLB-SC exchange-correlation functional with real time propagation in an atomic orbital basis set using the projector-augmented wave method. The method has been implemented for the electron structure…
Cluster calculations for H2dissociation on Cu and Ni
Self-consistent cluster calculations have been carried out for hydrogen dissociation on Cu and Ni clusters using local-density theory and the LCAO-DVM expansion. We find physisorption, chemisorption and dissociation minima in the resulting two-dimensional potential energy surfaces, and for the Ni cluster, also an indication of the associative molecular chemisorption state. For Cu we find a considerable barrier at the seam separating the molecular chemisorption and dissociative minima. The analysis of one-electron levels supports the picture of Harris and Andersson that the s to d conversion present on Ni surfaces does not similarly lower the barrier on Cu surface.