0000000000583476
AUTHOR
D. C. Rafferty
Zeptosecond contact times for element Z=120 synthesis
The synthesis of new superheavy elements beyond oganesson (Z=118) requires fusion reactions with projectile nuclei with proton numbers larger than that of $^{48}$Ca (Z=20), which has been successfully employed for the synthesis of elements with Z=112-118. In such reactions, fusion is drastically hindered by fast non-equilibrated dynamical processes. Attempts to produce nuclei with Z=120 using the $^{64}$Ni+$^{238}$U, $^{58}$Fe+$^{244}$Pu, $^{54}$Cr+$^{248}$Cm, and $^{50}$Ti+$^{249}$Cf reactions have been made, which all result in larger Coulomb forces than for $^{48}$Ca-induced reactions, but no discovery has been confirmed to date. In this work, mass and angle distributions of fission frag…
Nuclear structure dependence of fusion hindrance in heavy element synthesis
The production of the heaviest elements in fusion-evaporation reactions is substantially limited by very low cross sections, as fusion cross sections (including fusion-fission) are greatly reduced by the competing quasifission mechanism. Using the Australian National University Heavy Ion Accelerator Facility and CUBE detector array, fission fragments from the $^{48}\mathrm{Ti}+^{204,208}\mathrm{Pb}$ and $^{50}\mathrm{Ti}+^{206,208}\mathrm{Pb}$ reactions have been measured, with the aim to investigate how the competition between quasifission and fusion-fission evolves with small changes in entrance-channel properties associated mainly with the nuclear structure. Analysis of mass-distribution…
Mass-asymmetric fission in the 40ca+142Nd reaction
Shell effects play a major role in fission. Mass-asymmetric fission observed in the spontaneous and low energy fission of actinide nuclei was explained by incorporating the fragment shell properties in liquid drop model. Asymmetric fission has also been observed in the low energy fission of neutron-deficient 180 Hg nuclei in recent β -delayed fission experiments. This low-energy β -delayed fission has been explained in terms of strong shell effects in pre-scission configurations associated with the system after capture. Calculations predicted asymmetric fission for heavier Hg isotopes as well, at compound nuclear excitation energy as high as 40 MeV. To explore the evolution of fission fragm…
Quasifission Dynamics in the Formation of Superheavy Elements
The European physical journal / Web of Conferences 163, 00023 - (2017). doi:10.1051/epjconf/201716300023
Quasifission in heavy and superheavy element formation reactions
Superheavy elements are created in the laboratory by the fusion of two heavy nuclei. The large Coulomb repulsion that makes superheavy elements decay also makes the fusion process that forms them very unlikely. Instead, after sticking together for a short time, the two nuclei usually come apart, in a process called quasifission. Mass-angle distributions give the most direct information on the characteristics and time scales of quasifission. A systematic study of carefully chosen mass-angle distributions has provided information on the global trends of quasifission. Large deviations from these systematics reveal the major role played by the nuclear structure of the two colliding nuclei in de…
Observation of mass-asymmetric fission of mercury nuclei in heavy ion fusion
Background: Mass-asymmetric fission has been observed in low energy fission of $^{180}\mathrm{Hg}$. Calculations predicted the persistence of asymmetric fission in this region even at excitation energies of 30--40 MeV.Purpose: To investigate fission mass distributions by populating different isotopes of Hg using heavy ion fusion reactions.Methods: Fission fragment mass-angle distributions have been measured for two reactions, $^{40}\mathrm{Ca}+^{142}\mathrm{Nd}$ and $^{13}\mathrm{C}+^{182}\mathrm{W}$, populating $^{182}\mathrm{Hg}$ and $^{195}\mathrm{Hg}$, respectively, using the Heavy Ion Accelerator Facility and CUBE spectrometer at the Australian National University. Measurements were ma…