0000000000587390
AUTHOR
Susanne Foitzik
Electronic supplement from The influence of slavemaking lifestyle, caste and sex on chemical profiles in Temnothorax ants: insights into the evolution of cuticular hydrocarbons
Electronic supplement including additional figures and tables
Characterizing the collective personality of ant societies: aggressive colonies do not abandon their home.
Animal groups can show consistent behaviors or personalities just like solitary animals. We studied the collective behavior of Temnothorax nylanderi ant colonies, including consistency in behavior and correlations between different behavioral traits. We focused on four collective behaviors (aggression against intruders, nest relocation, removal of infected corpses and nest reconstruction) and also tested for links to the immune defense level of a colony and a fitness component (per-capita productivity). Behaviors leading to an increased exposure of ants to micro-parasites were expected to be positively associated with immune defense measures and indeed colonies that often relocated to other…
Worker Personality and Its Association with Spatially Structured Division of Labor
Division of labor is a defining characteristic of social insects and fundamental to their ecological success. Many of the numerous tasks essential for the survival of the colony must be performed at a specific location. Consequently, spatial organization is an integral aspect of division of labor. The mechanisms organizing the spatial distribution of workers, separating inside and outside workers without central control, is an essential, but so far neglected aspect of division of labor. In this study, we investigate the behavioral mechanisms governing the spatial distribution of individual workers and its physiological underpinning in the ant Myrmica rubra. By investigating worker personali…
Supplementary TextS26 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
This Supplement includes Supplementary Methods and Results; Table S4; List of Captions for Supplementary Tables and Supplementary Figures; List of Supplementary Archives deposited at DRYAD and Supplementary References.
Ant Societies Buffer Individual-Level Effects of Parasite Infections
Parasites decrease host fitness and can induce changes in host behavior, morphology, and physiology. When parasites exploit social insects, they influence not only infected individuals but also the society as a whole. Workers of the ant Temnothorax nylanderi are an intermediate host for the cestode Anomotaenia brevis. We studied a heavily parasitized population and found that, although parasite infection had strong and diverse consequences for individual workers, colony fitness remained unchanged. At the individual level, we uncovered differences among the three worker types, infected and healthy workers from parasitized colonies and healthy workers from nonparasitized colonies. Infected wo…
Parasite presence induces gene expression changes in an ant host related to immunity and longevity
Most species are either parasites or exploited by parasites, making parasite&ndash
Age, sex, mating status, but not social isolation interact to shape basal immunity in a group-living insect
International audience; Immunity is a crucial but costly trait. Individuals should therefore adjust their investment into immunity to their condition and infection risks, which are often determined by their age, sex, mating status and social environment. However, whether and how these four key factors can interact to shape basal immunity remains poorly understood. Here, we tested the simultaneous effects of these factors on hemocyte concentration and phenoloxidase activity in adults of the European earwig. We found that hemocyte concentration increased with age, and that this increase was stronger in males. We also found an age-dependent increase in phenoloxidase activity in males and virgi…
Parasitism and queen presence interactively shape worker behaviour and fertility in an ant host
Parasites with complex life cycles regularly alter host traits in their own interest. In social hosts, phenotypic alterations induced by parasites can also affect uninfected group members. The tapeworm Anomotaenia brevis uses Temnothorax nylanderi ants as intermediate hosts, reducing host activity and behavioural repertoire, but increasing life span. Uninfected nestmates are less active and less aggressive and suffer from higher mortality. Next to parasites, the social environment, such as the queen, influences worker behaviour, reproduction and longevity. Here, we studied how tapeworm parasitism interacts with the queen to affect the behaviour and reproductive potential of ant workers. We …
Gene expression patterns associated with caste and reproductive status in ants: worker-specific genes are more derived than queen-specific ones.
Variation in gene expression leads to phenotypic diversity and plays a central role in caste differentiation of eusocial insect species. In social Hymenoptera, females with the same genetic background can develop into queens or workers, which are characterized by divergent morphologies, behaviours and lifespan. Moreover, many social insects exhibit behaviourally distinct worker castes, such as brood-tenders and foragers. Researchers have just started to explore which genes are differentially expressed to achieve this remarkable phenotypic plasticity. Although the queen is normally the only reproductive individual in the nest, following her removal, young brood-tending workers often develop …
Supplement with additional information from Experimental increase in fecundity causes upregulation of fecundity and body maintenance genes in the fat body of ant queens
In most organisms, fecundity and longevity are negatively associated and the molecular regulation of these two life-history traits is highly interconnected. In addition, nutrient intake often has opposing effects on lifespan and reproduction. In contrast with solitary insects, the main reproductive individual of social hymenopterans, the queen, is also the most long-lived. During development, queen larvae are well-nourished, but we are only beginning to understand the impact of nutrition on the queens' adult life and the molecular regulation and connectivity of fecundity and longevity. Here, we used two experimental manipulations to alter queen fecundity in the ant Temnothorax rugatulus and…
Experimental increase in fecundity causes upregulation of fecundity and body maintenance genes in the fat body of ant queens.
In most organisms, fecundity and longevity are negatively associated and the molecular regulation of these two life-history traits is highly interconnected. In addition, nutrient intake often has opposing effects on lifespan and reproduction. In contrast to solitary insects, the main reproductive individual of social hymenopterans, the queen, is also the most long-lived. During development, queen larvae are well-nourished, but we are only beginning to understand the impact of nutrition on the queens' adult life and the molecular regulation and connectivity of fecundity and longevity. Here, we used two experimental manipulations to alter queen fecundity in the ant Temnothorax rugatulus and …
Insect societies fight back: the evolution of defensive traits against social parasites
Insect societies face many social parasites that exploit their altruistic behaviours or their resources. Due to the fitness costs these social parasites incur, hosts have evolved various behavioural, chemical, architectural and morphological defence traits. Similar to bacteria infecting multicellular hosts, social parasites have to successfully go through several steps to exploit their hosts. Here, we review how social insects try to interrupt this sequence of events. They can avoid parasite contact by choosing to nest in parasite-free locales or evade attacks by adapting their colony structure. Once social parasites attack, hosts attempt to detect them, which can be facilitated by adjustme…
Oh sister, where art thou? Spatial population structure and the evolution of an altruistic defence trait.
The evolution of parasite virulence and host defences is affected by population structure. This effect has been confirmed in studies focusing on large spatial scales, whereas the importance of local structure is not well understood. Slavemaking ants are social parasites that exploit workers of another species to rear their offspring. Enslaved workers of the host species Temnothorax longispinosus have been found to exhibit an effective post-enslavement defence behaviour: enslaved workers were observed killing a large proportion of the parasites’ offspring. As enslaved workers do not reproduce, they gain no direct fitness benefit from this ‘rebellion’ behaviour. However, there may be an indir…
Temnothorax pilagens sp. n. – a new slave-making species of the tribe Formicoxenini from North America (Hymenoptera, Formicidae)
A new species of the ant genus Temnothorax Forel, 1890 – Temnothorax pilagens sp. n. is described from eastern North America. T. pilagens sp. n. is an obligate slave-making ant with two known hosts: T. longispinosus (Roger, 1863) and T. ambiguus (Emery, 1895). A differential diagnosis against Temnothorax duloticus (Wesson, 1937), the other dulotic congener from the Nearctic, is presented and a biological characteristics of the new species is given.
No inbreeding depression but increased sexual investment in highly inbred ant colonies.
Inbreeding can lead to the expression of deleterious recessive alleles and to a subsequent fitness reduction. In Hymenoptera, deleterious alleles are purged in haploid males moderating inbreeding costs. However, in these haplodiploid species, inbreeding can result in the production of sterile diploid males. We investigated the effects of inbreeding on the individual and colony level in field colonies of the highly inbred ant Hypoponera opacior. In this species, outbreeding winged sexuals and nest-mating wingless sexuals mate during two separate reproductive periods. We show that regular sib-matings lead to high levels of homozygosity and the occasional production of diploid males, which spo…
Supplmementary information II from Ant behaviour and brain gene expression of defending hosts depend on the ecological success of the intruding social parasite
Genome of Temnothorax longispinosus: methods, assembly and annotation
Social organization and the evolution of life-history traits in two queen morphs of the ant Temnothorax rugatulus.
ABSTRACT During the evolution of social insects, not only did life-history traits diverge, with queens becoming highly fecund and long lived compared with their sterile workers, but also individual traits lost their importance compared with colony-level traits. In solitary animals, fecundity is largely influenced by female size, whereas in eusocial insects, colony size and queen number can affect the egg-laying rate. Here, we focused on the ant Temnothorax rugatulus, which exhibits two queen morphs varying in size and reproductive strategy, correlating with their colony's social organization. We experimentally tested the influence of social structure, colony and body size on queen fecundity…
Fitness costs of worker specialization for ant societies
Division of labour is of fundamental importance for the success of societies, yet little is known about how individual specialization affects the fitness of the group as a whole. While specialized workers may be more efficient in the tasks they perform than generalists, they may also lack the flexibility to respond to rapid shifts in task needs. Such rigidity could impose fitness costs when societies face dynamic and unpredictable events, such as an attack by socially parasitic slavemakers. Here, we experimentally assess the colony-level fitness consequences of behavioural specialization in Temnothorax longispinosus ants that are attacked by the slavemaker ant T. americanus . We manipulate…
Gene expression is more strongly associated with behavioural specialization than with age or fertility in ant workers.
The ecological success of social insects is based on division of labour, not only between queens and workers, but also among workers. Whether a worker tends the brood or forages is influenced by age, fertility and nutritional status, with brood carers being younger, more fecund and more corpulent. Here, we experimentally disentangle behavioural specialization from age and fertility in Temnothorax longispinosus ant workers and analyse how these parameters are linked to whole-body gene expression. A total of 3,644 genes were associated with behavioural specialization which is ten times more than associated with age and 50 times more than associated with fertility. Brood carers were characteri…
Diverse societies are more productive: a lesson from ants
The fitness consequences of animal personalities (also known as behavioural syndromes) have recently been studied in several solitary species. However, the adaptive significance of collective personalities in social insects and especially of behavioural variation among group members remains largely unexplored. Although intracolonial behavioural variation is an important component of division of labour, and as such a key feature for the success of societies, empirical links between behavioural variation and fitness are scarce. We investigated aggression, exploration and brood care behaviour in Temnothorax longispinosus ant colonies. We focused on two distinct aspects: intercolonial variabil…
Life history evolution in social insects: a female perspective
Social insects are known for their unusual life histories with fecund, long-lived queens and sterile, short-lived workers. We review ultimate factors underlying variation in life history strategies in female social insects, whose social life reshapes common trade-offs, such as the one between fecundity and longevity. Interspecific life history variation is associated with colony size, mediated by changes in division of labour and extrinsic mortality. In addition to the ratio of juvenile to adult mortality, social factors such as queen number influence life history trajectories. We discuss two hypotheses explaining why queen fecundity and lifespan is higher in single-queen societies and sugg…
Offspring reverse transcriptome responses to maternal deprivation when reared with pathogens in an insect with facultative family life
Offspring of species with facultative family life are able to live with and without parents (i.e. to adjust to extreme changes in their social environment). While these adjustments are well understood on a phenotypic level, their genetic underpinnings remain surprisingly understudied. Investigating gene expression changes in response to parental absence may elucidate the genetic constraints driving evolutionary transitions between solitary and family life. Here, we manipulated maternal presence to observe gene expression changes in the fat body of juvenile European earwigs, an insect with facultative family life. Because parents typically protect offspring against pathogens, expression chan…
The chemistry of competition: exploitation of heterospecific cues depends on the dominance rank in the community
Interspecific competition is an important ecological mechanism shaping the traits of the interacting species and structuring their communities. Less competitive species benefit from evading direct encounters with aggressive dominants, whereas dominant species could use cues left by subordinates to steal their resources or to chase them off. Here, we studied competitive interactions among five common and syntopic ant species in Central Europe (Formica polyctena, Formica rufibarbis, Lasius niger, Myrmica rubra and Tetramorium caespitum) and investigated their ability to react to heterospecific chemical cues. Using aggression assays, we established a clear dominance hierarchy of these species,…
Ant recognition cue diversity is higher in the presence of slavemaker ants
Social insect colonies defend themselves from intruders through nestmate recognition, yet the evolution and maintenance of recognition cue diversity is still poorly understood. We compared the recognition cue diversity of 9 populations of Temnothorax longispinosus ant colonies, including populations that harbored the socially parasitic slavemaker ant, Protomognathus americanus. Although ants recognize friends from foe based on recognition cues encoded in their cuticular hydrocarbon profile, which specific compounds are involved in recognition is unknown for most species. We therefore started by statistically identifying 9 putative recognition compounds involved in worker and colony aggressi…
Pace-of-life in a social insect: behavioral syndromes in ants shift along a climatic gradient
Lay SummaryLinks between behavioral traits can shift with the local climate. We show that behavioral associations with temperature not only occur across, but also within populations. At warmer sites ant colonies increased their exploration and foraging activity, but were less aggressive. Moreover, at these warmer sites, more positive links were found between behaviors within populations compared to colder sites, where more negative links prevailed. Our study suggests that associations between behaviors shift along climatic gradients.
Forewarned is forearmed: aggression and information use determine fitness costs of slave raids
Many animals use reliable indicators of upcoming events such as antagonistic interactions to prepare themselves. In group-living animals, not only the cue perceiving individuals are involved in mobilization, but the entire group can use this information. In this study, we analyze whether social insects, which perceive reliable information on an upcoming social parasite attack, can use this knowledge to better defend their colony. We focus on the interaction between the ant Temnothorax longispinosus and the slave-making ant Protomognathus americanus, which conducts destructive raids on host colonies to steal their brood. As a behavioral defense, host colonies show aggression, which has a con…
Convergent Loss of Chemoreceptors across Independent Origins of Slave-Making in Ants
The evolution of an obligate parasitic lifestyle often leads to the reduction of morphological and physiological traits, which may be accompanied by loss of genes and functions. Slave-maker ants are social parasites that exploit the work force of closely related ant species for social behaviours such as brood care and foraging. Recent divergence between these social parasites and their hosts enables comparative studies of gene family evolution. We sequenced the genomes of eight ant species, representing three independent origins of ant slavery. During the evolution of eusociality, chemoreceptor genes multiplied due to the importance of chemical communication in societies. We investigated ev…
Gene expression is stronger associated with behaviour than with age and fertility in ant workers
AbstractThe ecological success of social insects is based on division of labour, not only between queens and workers, but also among workers. Whether a worker tends the brood or forages is strongly influenced by age, fertility and nutritional status, with brood carers being younger, more fecund and corpulent. Here, we experimentally disentangle behaviour from age and fertility inTemnothorax longispinosusant workers and analyse how these parameters are linked to whole-body gene expression. Our transcriptome analysis reveals four times more genes associated with behaviour than with age and only few fertility-associated genes. Brood carers exhibited an upregulation of genes involved in lipid b…
Supplementary information I from Ant behaviour and brain gene expression of defending hosts depend on the ecological success of the intruding social parasite
Tables and additional figures and methods details
Comparative analyses of co-evolving host-parasite associations reveal unique gene expression patterns underlying slavemaker raiding and host defensive phenotypes
Abstract The transition to parasitism is a drastic shift in lifestyle, involving rapid changes in gene structure, function, and expression. After the establishment of antagonistic relationships, parasites and hosts co-evolve through reciprocal adaptations, often resulting in evolutionary arms-races. Repeated evolution of social parasitism and slavery among Temnothorax ants allows us to examine those gene expression patterns that characterize slavemaker raiding and reciprocal host defensive phenotypes. Previous behavioural studies have established that raiding strategies between Temnothorax slavemakers diverge, while host defense portfolios shift similarly under parasite pressure. We are the…
Evidence for a conserved queen-worker genetic toolkit across slave-making ants and their ant hosts
AbstractThe ecological success of social Hymenoptera (ants, bees, wasps) depends on the division of labour between the queen and workers. Each caste is highly specialised in its respective function in morphology, behaviour and life-history traits, such as lifespan and fecundity. Despite strong defences against alien intruders, insect societies are vulnerable to social parasites, such as workerless inquilines or slave-making (dulotic) ants. Here, we investigate whether gene expression varies in parallel ways between lifestyles (slave-making versus host ants) across five independent origins of ant slavery in the “Formicoxenus-group” of the ant tribe Crematogastrini. As caste differences are o…
Differential Response of Ant Colonies to Intruders: Attack Strategies Correlate With Potential Threat
Animals are often threatened by predators, parasites, or competitors, and attacks against these enemies are a common response, which can help to remove the danger. The costs of defense are complex and involve the risk of injury, the loss of energy ⁄time, and the erroneous identification of a friend as a foe. Our goal was to study the specificity of defense strategies. We analyzed the aggressive responses of ant colonies by confronting them with workers of an unfamiliar congeneric species, a non-nestmate conspecific, a co-occurring congeneric competitor species, and a social parasite—a slave-making ant. As expected, the latter species, which can inflict dramatic fitness losses to the colony,…
Condition-Dependent Trade-Off Between Weapon Size and Immunity in Males of the European Earwig
Abstract Investigating the expression of trade-offs between key life-history functions is central to our understanding of how these functions evolved and are maintained. However, detecting trade-offs can be challenging due to variation in resource availability, which masks trade-offs at the population level. Here, we investigated in the European earwig Forficula auricularia whether (1) weapon size trades off with three key immune parameters – hemocyte concentration, phenoloxidase and prophenoloxidase activity - and whether (2) expression and strength of these trade-offs depend on male body condition (body size) and/or change after an immune challenge. Our results partially confirmed conditi…
Comparative analyses of caste, sex, and developmental stage‐specific transcriptomes in two Temnothorax ants
Abstract Social insects dominate arthropod communities worldwide due to cooperation and division of labor in their societies. This, however, makes them vulnerable to exploitation by social parasites, such as slave‐making ants. Slave‐making ant workers pillage brood from neighboring nests of related host ant species. After emergence, host workers take over all nonreproductive colony tasks, whereas slavemakers have lost the ability to care for themselves and their offspring. Here, we compared transcriptomes of different developmental stages (larvae, pupae, and adults), castes (queens and workers), and sexes of two related ant species, the slavemaker Temnothorax americanus and its host Temnoth…
The influence of space and time on the evolution of altruistic defence: the case of ant slave rebellion.
How can antiparasite defence traits evolve even if they do not directly benefit their carriers? An example of such an indirect defence is rebellion of enslaved Temnothorax longispinosus ant workers against their social parasite Temnothorax americanus, a slavemaking ant. Ant slaves have been observed to kill their oppressors' offspring, a behaviour from which the sterile slaves cannot profit directly. Parasite brood killing could, however, reduce raiding pressure on related host colonies nearby. We analyse with extensive computer simulations for the Temnothorax slavemaker system under what conditions a hypothetical rebel allele could invade a host population, and in particular, how host-para…
The parasite's long arm: a tapeworm parasite induces behavioural changes in uninfected group members of its social host.
Parasites can induce alterations in host phenotypes in order to enhance their own survival and transmission. Parasites of social insects might not only benefit from altering their individual hosts, but also from inducing changes in uninfected group members. Temnothorax nylanderi ant workers infected with the tapeworm Anomotaenia brevis are known to be chemically distinct from nest-mates and do not contribute to colony fitness, but are tolerated in their colonies and well cared for. Here, we investigated how tapeworm- infected workers affect colony aggression by manipulating their presence in ant colonies and analysing whether their absence or presence resulted in behavioural alterations in…
Supplementary Table1: ANOVA II results from Queen loss increases worker survival in leaf-cutting ants under paraquat-induced oxidative stress
Longevity is traded off with fecundity in most solitary species, but the two traits are positively linked in social insects. The most fecund individuals (queens and kings) live longer than the non-reproductive individuals, the workers. In many species, workers may become fertile following queen loss, and recent evidence suggests that worker fecundity extends worker lifespan. We postulated that this effect is in part due to improved resilience to oxidative stress, and tested this hypothesis in three Myrmicine ants: Temnothorax rugatulus, and the leaf-cutting ants Atta colombica and Acromyrmex echinatior. We removed the queen from colonies to induce worker reproduction and subjected workers t…
Supplementary Figures from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
This supplement includes Supplementary Figure S1-S17.
Raiders from the sky: slavemaker founding queens select for aggressive host colonies.
Reciprocal selection pressures in host–parasite systems drive coevolutionary arms races that lead to advanced adaptations in both opponents. In the interactions between social parasites and their hosts, aggression is one of the major behavioural traits under selection. In a field manipulation, we aimed to disentangle the impact of slavemaking ants and nest density on aggression of Temnothorax longispinosus ants. An early slavemaker mating flight provided us with the unique opportunity to study the influence of host aggression and demography on founding decisions and success. We discovered that parasite queens avoided colony foundation in parasitized areas and were able to capture more broo…
The advantage of alternative tactics of prey and predators depends on the spatial pattern of prey and social interactions among predators
Individual variation in behavioral strategies is ubiquitous in nature. Yet, explaining how this variation is being maintained remains a challenging task. We use a spatially-explicit individual-based simulation model to evaluate the extent to which the efficiency of an alternative spacing tactic of prey and an alternative search tactic of predators are influenced by the spatial pattern of prey, social interactions among predators (i.e., interference and information sharing) and predator density. In response to predation risk, prey individuals can either spread out or aggregate. We demonstrate that if prey is extremely clumped, spreading out may help when predators share information regarding…
Long-lived Temnothorax ant queens switch from investment in immunity to antioxidant production with age
Abstract Senescence is manifested by an increase in molecular damage and a deterioration of biological functions with age. In most organisms, body maintenance is traded-off with reproduction. This negative relationship between longevity and fecundity is also evident on the molecular level. Exempt from this negative trait association, social insect queens are both extremely long-lived and highly fecund. Here, we study changes in gene expression with age and fecundity in ant queens to understand the molecular basis of their long lifespan. We analyse tissue-specific gene expression in young founding queens and old fecund queens of the ant Temnothorax rugatulus. More genes altered their express…
Queen loss increases worker survival in leaf-cutting ants under paraquat-induced oxidative stress
Longevity is traded off with fecundity in most solitary species, but the two traits are positively linked in social insects. In ants, the most fecund individuals (queens and kings) live longer than the non-reproductive individuals, the workers. In many species, workers may become fertile following queen loss, and recent evidence suggests that worker fecundity extends worker lifespan. We postulated that this effect is in part owing to improved resilience to oxidative stress, and tested this hypothesis in three Myrmicine ants: Temnothorax rugatulus, and the leaf-cutting ants Atta colombica and Acromyrmex echinatior . We removed the queen from colonies to induce worker reproduction and subjec…
Wingless ant males adjust mate-guarding behaviour to the competitive situation in the nest
We investigated whether wingless sexuals of the ant Hypoponera opacior adjust mate-guarding behaviour to the level of competition in the nest. Males mate with young nestmate females shortly before these emerge from the cocoon. Aggressive interactions among adult males have never been observed, but males embrace and guard the cocoons of their mating partners for up to 2 days. In laboratory experiments, the duration of pupal guarding increased with the number of adult males in the nest, but decreased with an increasing number of mating partners per male. These findings demonstrate that males are aware of the competitive situation in the nest and adjust their mating behaviour in an adaptive ma…
The ecological success of a social parasite increases with manipulation of collective host behaviour.
Many parasites alter the behaviour of their host to their own advantage, yet hosts often vary in their susceptibility to manipulation. The ecological and evolutionary implications of such variation can be profound, as resistant host populations may suffer lower parasite pressures than those susceptible to manipulation. To test this prediction, we assessed parasite-induced aggressive behaviours across 16 populations of two Temnothorax ant species, many of which harbour the slavemaker ant Protomognathus americanus. This social parasite uses its Dufour's gland secretions to manipulate its hosts into attacking nestmates, which may deter defenders away from itself during invasion. We indeed find…
The influence of slavemaking lifestyle, caste and sex on chemical profiles in Temnothorax ants: insights into the evolution of cuticular hydrocarbons
Chemical communication is central for the formation and maintenance of insect societies. Generally, social insects only allow nest-mates into their colony, which are recognized by their cuticular hydrocarbons (CHCs). Social parasites, which exploit insect societies, are selected to circumvent host recognition. Here, we studied whether chemical strategies to reduce recognition evolved convergently in slavemaking ants, and whether they extend to workers, queens and males alike. We studied CHCs of three social parasites and their related hosts to investigate whether the parasitic lifestyle selects for specific chemical traits that reduce host recognition. Slavemaker profiles were characterize…
Supplement 1: from Molecular regulation of lifespan extension in fertile ant workers
Additional methodological information, results and figures
Macro- and microgeographic genetic structure in an ant species with alternative reproductive tactics in sexuals
The genetic structure of social insect populations is influenced by their social organization and dispersal modes. The ant Hypoponera opacior shows diverse reproductive behaviours with regular cycles of outbreeding via winged sexuals and inbreeding via within-nest mating wingless sexuals that reproduce by budding. This unusual life cycle should be reflected in the genetic population structure, and we studied this on different scales using microsatellites. On a macrogeographic scale, populations were considerably structured and migration rates within the Chiricahuas were higher than those in between mountain ranges. On a local scale, our analyses revealed population viscosity through depende…
Vitellogenin-like A–associated shifts in social cue responsiveness regulate behavioral task specialization in an ant
Division of labor and task specialization explain the success of human and insect societies. Social insect colonies are characterized by division of labor, with workers specializing in brood care early and foraging later in life. Theory posits that this task switching requires shifts in responsiveness to task-related cues, yet experimental evidence is weak. Here, we show that a Vitellogenin (Vg) ortholog identified in an RNAseq study on the ant T. longispinosus is involved in this process: using phylogenetic analyses of Vg and Vg-like genes, we firstly show that this candidate gene does not cluster with the intensively studied honey bee Vg but falls into a separate Vg-like A cluster. Second…
Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects.
The exceptional longevity of social insect queens despite their lifelong high fecundity remains poorly understood in ageing biology. To gain insights into the mechanisms that might underlie ageing in social insects, we compared gene expression patterns between young and old castes (both queens and workers) across different lineages of social insects (two termite, two bee and two ant species). After global analyses, we paid particular attention to genes of the insulin/insulin-like growth factor 1 signalling (IIS)/target of rapamycin (TOR)/juvenile hormone (JH) network, which is well known to regulate lifespan and the trade-off between reproduction and somatic maintenance in solitary insects…
Similar Performance of Diploid and Haploid Males in an Ant Species without Inbreeding Avoidance
AbstractUnder haplodiploidy, a characteristic trait of all Hymenoptera, femalesdevelop from fertilised eggs, and males from unfertilised ones. Males aretherefore typically haploid. Yet, inbreeding can lead to the production ofdiploid males that often fail in development, are sterile or are of lowerfertility. In most Hymenoptera, inbreeding is avoided by dispersal flightsof one or both sexes, leading to low diploid male loads. We investigatedcauses for the production of diploid males and their performance in ahighly inbred social Hymenopteran species. In the ant Hypoponera opacior,inbreeding occurs between wingless sexuals, which mate within themother nest, whereas winged sexuals outbreed dur…
Tandem‐running and scouting behaviour are characterized by up‐regulation of learning and memory formation genes within the ant brain
Tandem-running is a recruitment behaviour in ants that has been described as a form of teaching, where spatial information possessed by a leader is conveyed to following nestmates. Within Temnothorax ants, tandem-running is used within a variety of contexts, from foraging and nest relocation to-in the case of slavemaking species-slave raiding. Here, we elucidate the transcriptomic basis of scouting, tandem-leading and tandem-following behaviours across two species with divergent lifestyles: the slavemaking Temnothorax americanus and its primary, nonparasitic host T. longispinosus. Analysis of gene expression data from brains revealed that only a small number of unique differentially express…
Gene expression patterns underlying parasite-induced alterations in host behaviour and life history
Many parasites manipulate their hosts' phenotype. In particular, parasites with complex life cycles take control of their intermediate hosts' behaviour and life history to increase transmission to their definitive host. The proximate mechanisms underlying these parasite-induced alterations are poorly understood. The cestode Anomotaenia brevis affects the behaviour, life history and morphology of parasitized Temnothorax nylanderi ants and indirectly of their unparasitized nestmates. To gain insights on how parasites alter host phenotypes, we contrast brain gene expression patterns of T. nylanderi workers parasitized with the cestode, their unparasitized nestmates and unparasitized workers fr…
Histone acetylation regulates the expression of genes involved in worker reproduction and lifespan in the ant Temnothorax rugatulus
In insect societies, the queen monopolizes reproduction while workers perform tasks such as brood care or foraging. Queen loss leads to ovary development and lifespan extension in workers from many ants. However, the underlying molecular mechanisms of this phenotypic plasticity remain unclear. Recent studies highlight the importance of epigenetics in regulating plastic traits in social insects. We investigated the role of histone acetylation in the regulation of worker reproduction in the ant Temnothorax rugatulus. We removed queens from their colonies to induce worker fecundity, and either fed workers with chemical inhibitors of histone acetylation (C646), deacetylation (Trichostatin A), o…
Use of waggle dance information in honey bees is linked to gene expression in the antennae, but not in the brain.
AbstractCommunication is essential for social animals, but deciding how to utilize information provided by conspecifics is a complex process that depends on environmental and intrinsic factors. Honey bees use a unique form of communication, the waggle dance, to inform nestmates about the location of food sources. However, as in many other animals, experienced individuals often ignore this social information and prefer to rely on prior experiences, i.e. private information. The neurosensory factors that drive the decision to use social information are not yet understood. Here we test whether the decision to use social dance information or private information is linked to gene expression diff…
Molecular regulation of lifespan extension in fertile ant workers.
The evolution of sociality in insects caused a divergence in lifespan between reproductive and non-reproductive castes. Ant queens can live for decades, while most workers survive only weeks to a few years. In most organisms, longevity is traded-off with reproduction, but in social insects, these two life-history traits are positively linked. Once fertility is induced in workers, e.g. by queen removal, worker lifespan increases. The molecular regulation of this positive link between fecundity and longevity and generally the molecular underpinnings of caste-specific senescence are not well understood. Here, we investigate the transcriptomic regulation of lifespan and reproduction in fat bod…
Impact of a social parasite on ant host populations depends on host species, habitat and year
Parasites often affect the abundance and life-history traits of their hosts. We studied the impact of a social parasite - a slavemaking ant - on host ant communities using two complementary field manipulations. In the first experiment, we analysed the effect of social parasite presence on host populations in one habitat. In a second experiment, conducted in two habitats, we used a cross-fostering design, analysing the effect of sympatric and allopatric social parasites. In the first experiment, host colonies benefited to some extent from residing in parasite-free areas, showing increased total production. Yet, in the second experiment, host colonies in plots containing social parasites were…
A Role of Histone Acetylation in the Regulation of Circadian Rhythm in Ants
Summary In many organisms, circadian rhythms and associated oscillations in gene expression are controlled by post-translational modifications of histone proteins. Although epigenetic mechanisms influence key aspects of insect societies, their implication in regulating circadian rhythms has not been studied in social insects. Here we ask whether histone acetylation plays a role in adjusting circadian activity in the ant Temnothorax longispinosus. We characterized activity patterns in 20 colonies to reveal that these ants exhibit a diurnal rhythm in colony-level activity and can rapidly respond to changes in the light regime. Then we fed T. longispinosus colonies with C646, a chemical inhibi…
Starvation endurance in the antTemnothorax nylanderidepends on group size, body size and access to larvae
Social interactions in animal groups can buffer environmental stress and may enhance survival under unfavourable conditions. In the present study, the impact on starvation endurance of social group, access to larvae and cold shock is studied in the ant Temnothorax nylanderi Forster. Resource sharing is expected to lead to grouped workers surviving longer than isolated ones. Access to larvae may increase longevity if larvae serve as food, or may interfere with survival if they induce caring behaviour in workers. Cold shock serves as a stress factor and a negative influence on survival is expected. The results show that isolated workers have a shorter lifespan than grouped workers, which in t…
Social isolation causes downregulation of immune and stress response genes and behavioural changes in a social insect
Humans and other social mammals experience isolation from their group as stressful, triggering behavioural and physiological anomalies that reduce fitness. While social isolation has been intensely studied in social mammals, it is less clear how social insects, which evolved sociality independently, respond to isolation. Here we examined whether the typical mammalian responses to social isolation, e.g., an impaired ability to interact socially and immune suppression are also found in social insects. We studied the consequences of social isolation on behaviour and brain gene expression in the ant Temnothorax nylanderi. Following isolation, workers interacted moderately less with adult nestma…
Age and ovarian development are related to worker personality and task allocation in the ant Leptothorax acervorum
Abstract In social insects, workers of different morphological castes and age are known to act differently. Yet, it is unclear how body size and ovarian development influence worker personalities (i.e. consistent behavioral variation) and task allocation in similar aged ant workers of monomorphic species. Behavioral variation is thought to be a key element of division of labor, but few studies have linked worker personality to task allocation. We investigated individual behavior in Leptothorax acervorum ant workers at two time points during the first three months of their life and in two different settings. We observed worker behavior in the nest (i.e. task allocation) and in standardized a…
Productivity increases with variation in aggression among group members in Temnothorax ants
Social insect societies are characterized not only by a reproductive division of labor between the queen and workers but also by a specialization of workers on different tasks. However, how this variation in behavior or morphology among workers influences colony fitness is largely unknown. We investigated in the ant Temnothorax longispinosus whether aggressive and exploratory behavior and/or variation among nest mates in these behavioral traits are associated with an important fitness measure, that is, per worker offspring production. In addition, we studied how body size and variation in size among workers affect this colony fitness correlate. First, we found strong differences in worker b…
Extended winters entail long-term costs for insect offspring reared in an overwinter burrow
International audience; Winter imposes an ecological challenge to animals living in colder climates, especially if these adverse conditions coincide with reproduction and offspring rearing. To overcome this challenge, some insects burrow in the soil to protect adults, larvae, or eggs from negative effects of winter. However, whether this protection is effective against any long-term consequences of changes in winter duration is unclear. Here, we investigated the long-term effects of winter length variation on eggs of the European earwig Forficula auricularia. In this insect, females construct and maintain a burrow between late autumn and spring, in which they provide extensive forms of care…
Collective defence portfolios of ant hosts shift with social parasite pressure
Host defences become increasingly costly as parasites breach successive lines of defence. Because selection favours hosts that successfully resist parasitism at the lowest possible cost, escalating coevolutionary arms races are likely to drive host defence portfolios towards ever more expensive strategies. We investigated the interplay between host defence portfolios and social parasite pressure by comparing 17 populations of two Temnothorax ant species. When successful, collective aggression not only prevents parasitation but also spares host colonies the cost of searching for and moving to a new nest site. However, once parasites breach the host's nest defence, host colonies should resor…
Geographic Variation in Social Parasite Pressure Predicts Intraspecific but not Interspecific Aggressive Responses in Hosts of a Slavemaking Ant
Variation in community composition over a species' geographic range leads to divergent selection pressures, resulting in interpopulation variation in trait expression. One of the most pervasive selective forces stems from antagonists such as parasites. Whereas hosts of microparasites developed sophisticated immune systems, social parasites select for behavioural host defences. Here, we investigated the link between parasite pressure exerted by the socially parasitic slavemaking ant Protomognathus americanus and colony-level aggression in Temnothorax ants from 17 populations. We studied almost the entire geographic range of two host species, including unparasitized populations. As previous s…
Odor diversity decreases with inbreeding in the antHypoponera opacior
Reduction in heterozygosity can lead to inbreeding depression. This loss of genetic variability especially affects diverse loci, such as immune genes or those encoding recognition cues. In social insects, nestmates are recognized by their odor, that is their cuticular hydrocarbon profile. Genes underlying hydrocarbon production are thought to be under balancing selection. If so, inbreeding should result in a loss of chemical diversity. We show here that cuticular hydrocarbon diversity decreases with inbreeding. Studying an ant with a facultative inbreeding lifestyle, we found inbred workers to exhibit both a lower number of hydrocarbons and less diverse, that is less evenly proportioned pro…
Ant behaviour and brain gene expression of defending hosts depend on the ecological success of the intruding social parasite.
The geographical mosaic theory of coevolution predicts that species interactions vary between locales. Depending on who leads the coevolutionary arms race, the effectivity of parasite attack or host defence strategies will explain parasite prevalence. Here, we compare behaviour and brain transcriptomes of Temnothorax longispinosus ant workers when defending their nest against an invading social parasite, the slavemaking ant Temnothorax americanus . A full-factorial design allowed us to test whether behaviour and gene expression are linked to parasite pressure on host populations or to the ecological success of parasite populations. Albeit host defences had been shown before to covary with …
Data files from Extreme lifespan extension in tapeworm-infected ant workers
Social insects are hosts of diverse parasites, but the influence of these parasites on phenotypic host traits is not yet well understood. Here, we tracked the survival of tapeworm-infected ant workers, their uninfected nest-mates and of ants from unparasitized colonies. Our multi-year study on the ant Temnothorax nylanderi, the intermediate host of the tapeworm Anomotaenia brevis, revealed a prolonged lifespan of infected workers compared to their uninfected peers. Intriguingly, their survival over 3 years did not differ from those of (uninfected) queens, whose lifespan can reach two decades. By contrast, uninfected workers from parasitized colonies suffered from increased mortality compare…
Data from: Gene expression patterns underlying parasite-induced alterations in host behaviour and life history
Many parasites manipulate their hosts’ phenotype. In particular, parasites with complex life cycles take control of their intermediate hosts’ behaviour and life history to increase transmission to their definitive host. The proximate mechanisms underlying these parasite-induced alterations are poorly understood. The cestode Anomotaenia brevis affects the behaviour, life history and morphology of parasitized Temnothorax nylanderi ants and indirectly of their unparasitized nestmates. To gain insights on how parasites alter host phenotypes, we contrast brain gene expression patterns of T. nylanderi workers parasitized with the cestode, their unparasitized nestmates and unparasitized workers fr…
Data from: Pace-of-life in a social insect: behavioral syndromes in ants shift along a climatic gradient
Behavioral syndromes are correlations between behavioral traits, but their selective advantage under different environmental conditions is not well understood. Here, we used the pace-of-life hypothesis to predict how behavioral syndromes could vary along climatic gradients. This hypothesis states that populations experiencing different ecological conditions should differ in suites of physiological characteristics associated with behavioral and life-history traits. We examined the persistence of behavioral syndromes at multiple levels in the ant Temnothorax longispinosus along a climatic gradient in north-eastern USA. “Across populations”, we predicted that proactive phenotypes, which show h…
Supplement 4: from Molecular regulation of lifespan extension in fertile ant workers
Result tables of GO enrichments
Excel table with differentially expressed genes slavemaker origin from Ant behaviour and brain gene expression of defending hosts depend on the ecological success of the intruding social parasite
slavemaker origin
Supplement 2: from Molecular regulation of lifespan extension in fertile ant workers
R scripts of DeSeq2 and statistical analyses
Table S5 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Table S1 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM 1.
Data from: Gene expression is more strongly associated with behavioural specialisation than with age or fertility in ant workers
The ecological success of social insects is based on division of labour, not only between queens and workers, but also among workers. Whether a worker tends the brood or forages is influenced by age, fertility and nutritional status, with brood carers being younger, more fecund and more corpulent. Here, we experimentally disentangle behavioural specialisation from age and fertility in Temnothorax longispinosus ant workers and analyse how these parameters are linked to whole-body gene expression. A total of 3644 genes were associated with behavioural specialisation which is ten times more than associated with age and 50 times more than associated with fertility. Brood carers were characteriz…
Table S16 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Table S6 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Table S20 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
R script survival analysis from Queen loss increases worker survival in leaf-cutting ants under paraquat-induced oxidative stress
Longevity is traded off with fecundity in most solitary species, but the two traits are positively linked in social insects. The most fecund individuals (queens and kings) live longer than the non-reproductive individuals, the workers. In many species, workers may become fertile following queen loss, and recent evidence suggests that worker fecundity extends worker lifespan. We postulated that this effect is in part due to improved resilience to oxidative stress, and tested this hypothesis in three Myrmicine ants: Temnothorax rugatulus, and the leaf-cutting ants Atta colombica and Acromyrmex echinatior. We removed the queen from colonies to induce worker reproduction and subjected workers t…
Table S12 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Data from: The influence of slavemaking lifestyle, caste and sex on chemical profiles in Temnothorax ants: insights into the evolution of cuticular hydrocarbons
Chemical communication is central for the formation and maintenance of insect societies. Generally, social insects only allow nest-mates into their colony, which are recognized by their cuticular hydrocarbons (CHCs). Social parasites, which exploit insect societies, are selected to circumvent host recognition. Here, we studied whether chemical strategies to reduce recognition evolved convergently in slavemaking ants, and whether they extend to workers, queens and males alike. We studied CHCs of three social parasites and their related hosts to investigate whether the parasitic lifestyle selects for specific chemical traits that reduce host recognition. Slavemaker profiles were characterized…
Data from: Tandem-running and scouting behavior are characterized by up-regulation of learning and memory formation genes within the ant brain
Tandem-running is a recruitment behavior in ants that has been described as a form of teaching, where spatial information possessed by a leader is conveyed to following nestmates. Within Temnothorax ants, tandem-running is used within a variety of contexts, from foraging and nest relocation to – in the case of slavemaking species – slave raiding. Here, we elucidate the transcriptomic basis of scouting, tandem-leading, and tandem-following behavior across two species with divergent lifestyles: the slavemaking Temnothorax americanus and its primary, non-parasitic host T. longispinosus. Analysis of gene expression data from brains revealed that only a small number of unique differentially-expr…
Data from: No inbreeding depression but increased sexual investment in highly inbred ant colonies
Inbreeding can lead to the expression of deleterious recessive alleles and to a subsequent fitness reduction. In Hymenoptera, deleterious alleles are purged in haploid males moderating inbreeding costs. However, in these haplo-diploid species, inbreeding can result in the production of sterile diploid males. We investigated the effects of inbreeding on the individual and colony level in field colonies of the highly inbred ant Hypoponera opacior. In this species, outbreeding winged sexuals and nest-mating wingless sexuals mate during two separate reproductive periods. We show that regular sib-matings lead to high levels of homozygosity and the occasional production of diploid males, which sp…
Table S3 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Supplement 3: from Molecular regulation of lifespan extension in fertile ant workers
List of differentially expressed genes
Supplement 5: from Molecular regulation of lifespan extension in fertile ant workers
Information on all differentially expressed transcripts
Data from: Macro- and microgeographic genetic structure in an ant species with alternative reproductive tactics in sexuals
The genetic structure of social insect populations is influenced by their social organisation and dispersal modes. The ant Hypoponera opacior shows diverse reproductive behaviours with regular cycles of outbreeding via winged sexuals and inbreeding via within-nest mating wingless sexuals that reproduce by budding. This unusual life cycle should be reflected in the genetic population structure and we studied this on different scales using microsatellites. On a macrogeographic scale, populations were considerably structured and migration rates within the Chiricahuas were higher than those in-between mountain ranges. On a local scale, our analyses revealed population viscosity through dependan…
Table S10 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Data from: Gene expression patterns associated with caste and reproductive status in ants: worker-specific genes are more derived than queen-specific ones
Variation in gene expression leads to phenotypic diversity and plays a central role in caste differentiation of eusocial insect species. In social Hymenoptera, females with the same genetic background can develop into queens or workers, which are characterized by divergent morphologies, behaviors and lifespan. Moreover, many social insects exhibit behaviorally distinct worker castes, such as brood-tenders and foragers. Researchers have just started to explore which genes are differentially expressed to achieve this remarkable phenotypic plasticity. Although the queen is normally the only reproductive individual in the nest, following her removal, young brood-tending workers often develop ov…
Table S26 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Excel Table with differentially expressed genes host origin from Ant behaviour and brain gene expression of defending hosts depend on the ecological success of the intruding social parasite
Host origin
Table S24 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Data from: The parasite’s long arm: a tapeworm parasite induces behavioural changes in uninfected group members of its social host
Parasites can induce alterations in host phenotypes in order to enhance their own survival and transmission. Parasites of social insects might not only benefit from altering their individual hosts, but also from inducing changes in uninfected group members. Temnothorax nylanderi ant workers infected with the tapeworm Anomotaenia brevis are known to be chemically distinct from nestmates and do not contribute to colony fitness, but are tolerated in their colonies and well cared-for. Here, we investigated how infected workers affect colony aggression by manipulating the presence of tapeworm-infected workers and analysing whether their absence or presence resulted in behavioural alterations in …
Table S15 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Table S19 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Data from: Vitellogenin-like A–associated shifts in social cue responsiveness regulate behavioral task specialization in an ant
Division of labor and task specialization explain the success of human and insect societies. Social insect colonies are characterized by division of labor with workers specializing on brood care early and foraging later in life. Theory posits that this task switching requires shifts in responsiveness to task-related cues, yet experimental evidence is weak. Here we show that a Vitellogenin (Vg) ortholog identified in a RNAseq study on the ant Temnothorax longispinosus is involved in this process: Using phylogenetic analyses of Vg and Vg-like genes, we firstly show that this candidate gene does not cluster with the intensively studied honey bee Vg, but falls into a separate Vg-like A cluster.…
Data from: Fitness costs of worker specialisation for ant societies
Division of labour is of fundamental importance for the success of societies, yet little is known about how individual specialization affects the fitness of the group as a whole. While specialized workers may be more efficient in the tasks they perform than generalists, they may also lack the flexibility to respond to rapid shifts in task needs. Such rigidity could impose fitness costs when societies face dynamic and unpredictable events, such as an attack by socially parasitic slavemakers. Here, we experimentally assess the colony-level fitness consequences of behavioural specialization in Temnothorax longispinosus ants that are attacked by the slavemaker ant T. americanus. We manipulated …
Data from: Collective defence portfolios of ant hosts shift with social parasite pressure
Host defences become increasingly costly as parasites breach successive lines of defence. Because selection favours hosts that successfully resist parasitism at the lowest possible cost, escalating coevolutionary arms races are likely to drive host defence portfolios towards ever more expensive strategies. We investigated the interplay between host defence portfolios and social parasite pressure by comparing 17 populations of two Temnothorax ant species. When successful, collective aggression not only prevents parasitation but also spares host colonies the cost of searching for and moving to a new nest site. However, once parasites breach the host's nest defence, host colonies should resort…
Table S7 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Table S11 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Table S2 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Table S17 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Data from: Odor diversity decreases with inbreeding in the ant Hypoponera opacior
Reduction in heterozygosity can lead to inbreeding depression. This loss of genetic variability especially affects diverse loci, such as immune genes or those encoding recognition cues. In social insects, nestmates are recognized by their odor, i.e. their cuticular hydrocarbon profile. Genes underlying hydrocarbon production are thought to be under balancing selection. If so, inbreeding should result in a loss of chemical diversity. We show here that cuticular hydrocarbon diversity decreases with inbreeding. Studying an ant with a facultative inbreeding lifestyle we found inbred workers to exhibit both a lower number of hydrocarbons and less diverse, that is, less evenly-proportioned profil…
Data from: Ant societies buffer individual-level effects of parasite infections
Parasites decrease host fitness and can induce changes in host behavior, morphology, and physiology. When parasites exploit social insects, they influence not only infected individuals but the society as a whole. Workers of the ant Temnothorax nylanderi are an intermediate host for the cestode Anomotaenia brevis. We studied a heavily parasitized population and found that while parasite infection had strong and diverse consequences for individual workers, colony fitness remained unchanged. On the individual level, we uncovered differences among the three worker types: infected and healthy workers from parasitized colonies and healthy workers from non-parasitized colonies. Infected workers we…
Figure S1 from Offspring reverse transcriptome responses to maternal deprivation when reared with pathogens in an insect with facultative family life
Genes affected by the presence of the pathogen, independently of maternal presence. Y-axis represents normalized expression across samples per gene (Z-Score).
Table S21 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Table S23 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Table S25 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Raw data A.echinatior from Queen loss increases worker survival in leaf-cutting ants under paraquat-induced oxidative stress
Longevity is traded off with fecundity in most solitary species, but the two traits are positively linked in social insects. The most fecund individuals (queens and kings) live longer than the non-reproductive individuals, the workers. In many species, workers may become fertile following queen loss, and recent evidence suggests that worker fecundity extends worker lifespan. We postulated that this effect is in part due to improved resilience to oxidative stress, and tested this hypothesis in three Myrmicine ants: Temnothorax rugatulus, and the leaf-cutting ants Atta colombica and Acromyrmex echinatior. We removed the queen from colonies to induce worker reproduction and subjected workers t…
Table S13 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Table S9 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Raw dat A. colombica from Queen loss increases worker survival in leaf-cutting ants under paraquat-induced oxidative stress
Longevity is traded off with fecundity in most solitary species, but the two traits are positively linked in social insects. The most fecund individuals (queens and kings) live longer than the non-reproductive individuals, the workers. In many species, workers may become fertile following queen loss, and recent evidence suggests that worker fecundity extends worker lifespan. We postulated that this effect is in part due to improved resilience to oxidative stress, and tested this hypothesis in three Myrmicine ants: Temnothorax rugatulus, and the leaf-cutting ants Atta colombica and Acromyrmex echinatior. We removed the queen from colonies to induce worker reproduction and subjected workers t…
Table S22 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Excel Table with differentially expressed genes parasite success and attack from Ant behaviour and brain gene expression of defending hosts depend on the ecological success of the intruding social parasite
Parasite success and attack no Attack
Table S18 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Table S8 from Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects
Overview of all Supplementary tables provided as separate Excel files, except Table S4 which is included in ESM1.
Tables S1 & S2 from Offspring reverse transcriptome responses to maternal deprivation when reared with pathogens in an insect with facultative family life
Table S1. Comparisons of different transcriptome assemblies. The table on the sheet "Transrate output" shows data obtained using Transrate v.1.03 (Smith-unna et al., 2016). We compared assemblies created using Trinity and CLC Assembly Cell, as well as a merged "hybrid" obtained using CAP3 (Huang and Madan, 1999). The assembly comparison was used to determine the best assembly for continued analyses. Table S2. Full list of all DEGs revealed by the LRTs testing for main and interaction effects, as well as the associated annotations and read counts per sample. Note that no DEGs depended on maternal presence alone. Table headers are default DEseq2 headers, while the Blast annotation was added b…
Raw data T. rugatulus from Queen loss increases worker survival in leaf-cutting ants under paraquat-induced oxidative stress
Longevity is traded off with fecundity in most solitary species, but the two traits are positively linked in social insects. The most fecund individuals (queens and kings) live longer than the non-reproductive individuals, the workers. In many species, workers may become fertile following queen loss, and recent evidence suggests that worker fecundity extends worker lifespan. We postulated that this effect is in part due to improved resilience to oxidative stress, and tested this hypothesis in three Myrmicine ants: Temnothorax rugatulus, and the leaf-cutting ants Atta colombica and Acromyrmex echinatior. We removed the queen from colonies to induce worker reproduction and subjected workers t…