0000000000590298
AUTHOR
Alberto Paleari
Temperature dependence of luminescence decay in Sn-doped silica
We report an experimental study on the temperature dependence, in the range 18-300 K, of the decay kinetics of the emission at 4.1 eV from the first excited electronic state of oxygen deficient centers in a 2000 ppm Sn-doped sol-gel silica. At low temperature, this luminescence decays exponentially with a lifetime of 8.4 ns, whereas, on increasing the temperature, the time decay decreases and cannot be fitted with an exponential function. These results are expected if there is a competition between the radiative and the thermally activated intersystem-crossing decay channels toward the associated triplet state. The comparison with previous data in pure oxygen-deficient and Ge-doped silica g…
Luminescence and absorption spectroscopy of Sn-related impurity centers in silica
We report an experimental study on the absorption and luminescence spectra of oxygen deficient point defects in Sn-doped silica. The absorption band at 4.9 eV (B2β band) and the two related photoluminescence bands at ∼4.2 eV (singlet-singlet emission, S1 → S0) and at ∼3.2 eV (triplet-singlet emission, T1 → S0), linked by a thermally activated T1 → S1 inter-system crossing process (ISC), are studied as a function of temperature from 300 to 20 K. This approach allows us to investigate the dynamics properties of the matrix in the surroundings of the point defects and the effects of local disorder on the two relaxation processes from S1: the radiative channel to S0 and the ISC process to T1. We…
centers induced by γ irradiation in sol–gel synthesized oxygen deficient amorphous silicon dioxide
The effects of room temperature γ-ray irradiation up to a dose of ∼1300 kGy are investigated by Electron paramagnetic resonance (EPR) measurements in amorphous silicon dioxide (a-SiO2) produced by a sol-gel synthesis method that introduces O{triple bond, long}Si{single bond}Si{triple bond, long}O oxygen deficiency. We have found that exposure to radiation generates the Eγ′ center with the same spectral features found in high purity commercial a-SiO2. The maximum concentration of defects induced in this sol-gel material indicates that its resistance to radiation is comparable to that of synthetic fused a-SiO2. The concentration of Eγ′ center increases with irradiation, featuring a sublinear …