0000000000590946

AUTHOR

Gerrit Ralf Surup

Characterization of renewable reductants and charcoal-based pellets for the use in ferroalloy industries

This study investigates the effect of high-temperature pyrolysis and post-treatment processes on spruce and oak charcoal yields and CO2 reactivity in a slow pyrolysis reactor. Post-treatment processes such as co-pyrolysis of biomass and recirculated tar mixture with that to the distillation of the charcoal-tar blend gave similar increase in charcoal yields. From a technological standpoint, co-pyrolysis of charcoal and tar mixture decreased the CO2 reactivity of the charcoal approaching that of fossil-based coke. This emphasize the importance of tar addition and high temperature treatment on charcoal properties. Moreover, the findings of this work show the potential use of the tar organic fr…

research product

Effect of operating conditions and feedstock composition on the properties of manganese oxide or quartz charcoal pellets for the use in ferroalloy industries

peer-reviewed The full text of this article will not be available until the embargo expires on the 26/12/2021 This study investigates the effect of heat treatment temperature on the properties of charcoal composite pellets used for the reduction of ferroalloys. The heavy fraction of biooil was used as a binder for the charcoal ore pellet preparation. The effect of heat treatment temperature on the pellet shrinkage was related to the degree of reduction which varied with feedstock and ore composition. The results showed that the size and shape of the charcoal pellets were not affected by the biooil devolatilization. Manganese charcoal pellets showed higher electrical resistance during pyroly…

research product

Modeling the influence of potassium content and heating rate on biomass pyrolysis

This study presents a combined kinetic and particle model that describes the effect of potassium and heating rate during the fast pyrolysis of woody and herbaceous biomass. The model calculates the mass loss rate, over a wide range of operating conditions relevant to suspension firing. The shrinking particle model considers internal and external heat transfer limitations and incorporates catalytic effects of potassium on the product yields. Modeling parameters were tuned with experimentally determined char yields at high heating rates (>200 K s−1) using a wire mesh reactor, a single particle burner, and a drop tube reactor. The experimental data demonstrated that heating rate and potassium …

research product

The effect of feedstock origin and temperature on the structure and reactivity of char from pyrolysis at 1300–2800 °C

This study reports the effect of feedstock origin, residence time, and heat treatment temperature on CO2 and O2 reactivities, nanostructure and carbon chemistry of chars prepared at 1300, 1600, 2400, and 2800 °C in a slow pyrolysis reactor. The structure of char was characterized by transmission electron microscopy and Raman spectroscopy. The CO2 and O2 reactivity of char was investigated by thermogravimetric analysis. Results showed that the ash composition and residence time influence the char reactivity less than the heat treatment temperature. The heat treatment temperature and co-pyrolysis of pinewood char with biooil decreased the CO2 reactivity, approaching that of metallurgical coke…

research product

A study of densified biochar as carbon source in the silicon and ferrosilicon production

Abstract Biochar pellets were investigated as renewable reducing agents in substitution of coal and coke in the silicon and ferrosilicon production, where a high reactivity, good mechanical properties and low feedstock costs are appreciated. The usage of pyrolysis oil as binder was investigated as way to improve the quality of the pellets. Norway spruce biochar produced at 500, 800 and 1100 °C, was pelletized blended with pyrolysis oil and lignosulphonate. A second heat treatment was carried out at the same temperatures to evaluate the interaction between biochar and pyrolysis oil and to imitate the thermal stability of the pellets when used in a furnace. Density, tensile strength and mecha…

research product

Characterization and reactivity of charcoal from high temperature pyrolysis (800-1600°C)

This study presents the effect of wood origin and heat treatment temperature on the CO2 reactivity, nanostructure and carbon chemistry of chars prepared at 800, 1200, and 1600 °C in slow pyrolysis reactors. The structure of charcoal was characterized by transmission electron microscopy, Raman spectroscopy, mercury intrusion porosimetry and N2 adsorption. The CO2 reactivity of char was investigated by thermogravimetric analysis. Results showed that spruce and oak chars have similar reactivity at all heat treatment temperatures. The oak char prepared at 1600 °C contained long and flat graphene layers and interplanar distance that is similar to graphite and thus, was more ordered t…

research product

Renewable reducing agents for the use in ferroalloy industries : Doctoral Dissertation for the Degree Philosophiae Doctor (PhD) at the Faculty of Engineering and Science, Specialisation in Renewable Energy

research product