0000000000590946

AUTHOR

Gerrit Ralf Surup

showing 7 related works from this author

Characterization of renewable reductants and charcoal-based pellets for the use in ferroalloy industries

2018

This study investigates the effect of high-temperature pyrolysis and post-treatment processes on spruce and oak charcoal yields and CO2 reactivity in a slow pyrolysis reactor. Post-treatment processes such as co-pyrolysis of biomass and recirculated tar mixture with that to the distillation of the charcoal-tar blend gave similar increase in charcoal yields. From a technological standpoint, co-pyrolysis of charcoal and tar mixture decreased the CO2 reactivity of the charcoal approaching that of fossil-based coke. This emphasize the importance of tar addition and high temperature treatment on charcoal properties. Moreover, the findings of this work show the potential use of the tar organic fr…

020209 energypelletizationPelletizationPelletsBiomassFerroalloy02 engineering and technologyIndustrial and Manufacturing Engineering020401 chemical engineeringhigh temperature pyrolysis0202 electrical engineering electronic engineering information engineeringHigh temperature pyrolysis0204 chemical engineeringElectrical and Electronic EngineeringCharcoalFerroalloy industryCivil and Structural EngineeringChemistrysecondary heat treatmentMechanical EngineeringTarBuilding and ConstructionCokeferroalloy industryPelletizingPulp and paper industryPollutionGeneral EnergyCharcoalvisual_artvisual_art.visual_art_mediumSecondary heat treatmentPyrolysischarcoal
researchProduct

Effect of operating conditions and feedstock composition on the properties of manganese oxide or quartz charcoal pellets for the use in ferroalloy in…

2020

peer-reviewed The full text of this article will not be available until the embargo expires on the 26/12/2021 This study investigates the effect of heat treatment temperature on the properties of charcoal composite pellets used for the reduction of ferroalloys. The heavy fraction of biooil was used as a binder for the charcoal ore pellet preparation. The effect of heat treatment temperature on the pellet shrinkage was related to the degree of reduction which varied with feedstock and ore composition. The results showed that the size and shape of the charcoal pellets were not affected by the biooil devolatilization. Manganese charcoal pellets showed higher electrical resistance during pyroly…

BriquetteMaterials science020209 energyComposite numberPelletsFerroalloy02 engineering and technologyRaw materialIndustrial and Manufacturing Engineering020401 chemical engineeringMaschinenbauPellet0202 electrical engineering electronic engineering information engineering0204 chemical engineeringElectrical and Electronic EngineeringCharcoalbiooilCivil and Structural EngineeringferroalloysMechanical Engineeringdigestive oral and skin physiologyMetallurgyashBuilding and Constructionpyrolysisequipment and suppliesPollutionGeneral Energyvisual_artvisual_art.visual_art_mediumddc:600Pyrolysischarcoal
researchProduct

Modeling the influence of potassium content and heating rate on biomass pyrolysis

2017

This study presents a combined kinetic and particle model that describes the effect of potassium and heating rate during the fast pyrolysis of woody and herbaceous biomass. The model calculates the mass loss rate, over a wide range of operating conditions relevant to suspension firing. The shrinking particle model considers internal and external heat transfer limitations and incorporates catalytic effects of potassium on the product yields. Modeling parameters were tuned with experimentally determined char yields at high heating rates (>200 K s−1) using a wire mesh reactor, a single particle burner, and a drop tube reactor. The experimental data demonstrated that heating rate and potassium …

fast pyrolysisParticle modelheating rate020209 energyPotassiumchemistry.chemical_elementBiomass02 engineering and technologyManagement Monitoring Policy and LawEnergy engineeringMetaplast0202 electrical engineering electronic engineering information engineeringmetaplastWaste managementpotassiumMechanical EngineeringHerbaceous biomassBuilding and ConstructionHeating ratePulp and paper industryKineticsGeneral EnergychemistrykineticsHeat transferPotassiumParticle sizePyrolysisFast pyrolysis
researchProduct

The effect of feedstock origin and temperature on the structure and reactivity of char from pyrolysis at 1300–2800 °C

2018

This study reports the effect of feedstock origin, residence time, and heat treatment temperature on CO2 and O2 reactivities, nanostructure and carbon chemistry of chars prepared at 1300, 1600, 2400, and 2800 °C in a slow pyrolysis reactor. The structure of char was characterized by transmission electron microscopy and Raman spectroscopy. The CO2 and O2 reactivity of char was investigated by thermogravimetric analysis. Results showed that the ash composition and residence time influence the char reactivity less than the heat treatment temperature. The heat treatment temperature and co-pyrolysis of pinewood char with biooil decreased the CO2 reactivity, approaching that of metallurgical coke…

Thermogravimetric analysisBiooilHigh-temperature pyrolysis020209 energyGeneral Chemical EngineeringEnergy Engineering and Power Technologychemistry.chemical_element02 engineering and technologyRaw materialsymbols.namesake020401 chemical engineeringMaschinenbau0202 electrical engineering electronic engineering information engineeringReactivity (chemistry)Char0204 chemical engineeringOrganic ChemistryReactivityMetallurgical cokeFuel TechnologychemistryChemical engineeringTransmission electron microscopyBiomass charsymbolsRaman spectroscopyCarbonPyrolysis
researchProduct

A study of densified biochar as carbon source in the silicon and ferrosilicon production

2019

Abstract Biochar pellets were investigated as renewable reducing agents in substitution of coal and coke in the silicon and ferrosilicon production, where a high reactivity, good mechanical properties and low feedstock costs are appreciated. The usage of pyrolysis oil as binder was investigated as way to improve the quality of the pellets. Norway spruce biochar produced at 500, 800 and 1100 °C, was pelletized blended with pyrolysis oil and lignosulphonate. A second heat treatment was carried out at the same temperatures to evaluate the interaction between biochar and pyrolysis oil and to imitate the thermal stability of the pellets when used in a furnace. Density, tensile strength and mecha…

Materials science020209 energyPellets02 engineering and technologyRaw materialIndustrial and Manufacturing Engineeringchemistry.chemical_compoundFerrosilicon020401 chemical engineeringPyrolysis oilBiochar0202 electrical engineering electronic engineering information engineeringCoal0204 chemical engineeringElectrical and Electronic EngineeringCivil and Structural Engineeringbusiness.industryMechanical Engineeringdigestive oral and skin physiologyMetallurgyBuilding and ConstructionCokeVDP::Teknologi: 500::Materialteknologi: 520::Annen materialteknologi: 529PollutionGeneral EnergychemistrybusinessPyrolysis
researchProduct

Characterization and reactivity of charcoal from high temperature pyrolysis (800-1600°C)

2019

This study presents the effect of wood origin and heat treatment temperature on the CO2 reactivity, nanostructure and carbon chemistry of chars prepared at 800, 1200, and 1600 °C in slow pyrolysis reactors. The structure of charcoal was characterized by transmission electron microscopy, Raman spectroscopy, mercury intrusion porosimetry and N2 adsorption. The CO2 reactivity of char was investigated by thermogravimetric analysis. Results showed that spruce and oak chars have similar reactivity at all heat treatment temperatures. The oak char prepared at 1600 °C contained long and flat graphene layers and interplanar distance that is similar to graphite and thus, was more ordered t…

Thermogravimetric analysisMaterials science020209 energyGeneral Chemical EngineeringChemieEnergy Engineering and Power Technologychemistry.chemical_element02 engineering and technologyAdsorption020401 chemical engineering0202 electrical engineering electronic engineering information engineeringReactivity (chemistry)CharGraphite0204 chemical engineeringCharcoallow heating rateOrganic Chemistrynon-graphitizing carbonCO2 reactivityFuel TechnologyChemical engineeringchemistryhigh-temperature pyrolysisvisual_artvisual_art.visual_art_mediumPyrolysisCarboncharcoal
researchProduct

Renewable reducing agents for the use in ferroalloy industries : Doctoral Dissertation for the Degree Philosophiae Doctor (PhD) at the Faculty of Eng…

2019

researchProduct