0000000000593134
AUTHOR
P Spagnoletti
Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive $^{222}$Ra and $^{228}$Ra Beams
There is sparse direct experimental evidence that atomic nuclei can exhibit stable pear shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole ($E3$) matrix elements have been determined for transitions in $^{222,228}$Ra nuclei using the method of sub-barrier, multi-step Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of $E$3 matrix elements for different nuclear transitions is explained by describing $^{222}$Ra as pear-shaped with stable octupole deformation, while $^{228}$Ra behaves like an octupole vibrator.
Restoring the valence-shell stabilization in 140Nd
A projectile Coulomb-excitation experiment was performed at the radioactive-ion beam facility HIE-ISOLDE at CERN to obtain $E2$ and $M1$ transition matrix elements of $^{140}$Nd using the multistep Coulomb-excitation code GOSIA. The absolute $M1$ strengths, $\textrm{B}(M1;2^+_2→2^+_1)=0.033(8)μ^2_N,\textrm{B}(M1;2^+_3→2^+_1)=0.26^{+0.11}_{−0.10}μ^2_N$, and $\textrm{B}(M1;2^+_4→2^+_1)<0.04μ^2_{\textrm{N}}$, identify the $2^+_3$ state as the main fragment of the one-quadrupole-phonon proton-neutron mixed-symmetry state of $^{140}$Nd. The degree of F-spin mixing in $^{140}$Nd was quantified with the determination of the mixing matrix element $V_{\textrm{F−mix}}<7^{+13}_{−7}$keV.
The observation of vibrating pear-shapes in radon nuclei (vol 10, 2473, 2019)
α -decay spectroscopy of the N=130 isotones Ra 218 and Th 220: Mitigation of α -particle energy summing with implanted nuclei
An analysis technique has been developed in order to mitigate energy summing due to sequential short-lived α decays from nuclei implanted into a silicon detector. Using this technique, α-decay spectroscopy of the N=130 isotones Ra218 (Z=88) and Th220 (Z=90) has been performed. The energies of the α particles emitted in the Ra218→Rn214 and Th220→Ra216 ground-state-to-ground-state decays have been measured to be 8381(4) keV and 8818(13) keV, respectively. The half-lives of the ground states of Ra218 and Th220 have been measured to be 25.99(10) μs and 10.4(4) μs, respectively. The half-lives of the ground states of the α-decay daughters, Rn214 and Ra216, have been measured to be 259(3) ns and …