0000000000593827
AUTHOR
Stéphane Roux
Characterization and biodistribution of Au nanoparticles loaded in PLGA nanocarriers using an original encapsulation process
Due to their imaging and radiosensitizing properties, ultrasmall gadolinium chelate-coated gold nanoparticles (AuNP) represent a promising approach in the diagnosis and the treatment of tumors. However, their poor pharmacokinetic profile, especially their rapid renal clearance prevents from an efficient exploitation of their potential for medical applications. The present study focuses on a strategy which resides in the encapsulation of AuNP in large polymeric NP to avoid the glomerular filtration and then to prolong the vascular residence time. An original encapsulation procedure using the polyethyleneimine (PEI) was set up to electrostatically entrap AuNP in biodegradable poly(lactic-co-g…
A top-down synthesis route to ultrasmall multifunctional Gd-based Silica nanoparticles for theranostic applications
International audience; New, ultrasmall nanoparticles with sizes below 5 nm have been obtained. These small rigid platforms (SRP) are composed of a polysiloxane matrix with DOTAGA (1,4,7,10-tetraazacyclododecane-1-glutaric anhydride-4,7,10-triacetic acid)-Gd3+ chelates on their surface. They have been synthesised by an original top-down process: 1) formation of a gadolinium oxide Gd2O3 core, 2) encapsulation in a polysiloxane shell grafted with DOTAGA ligands, 3) dissolution of the gadolinium oxide core due to chelation of Gd3+ by DOTAGA ligands and 4) polysiloxane fragmentation. These nanoparticles have been fully characterised using photon correlation spectroscopy (PCS), transmission elec…
Granulocyte Colony-Stimulating Factor Nanocarriers for Stimulation of the Immune System (Part I): Synthesis and Biodistribution Studies
In the field of cancer immunotherapy, an original approach consists of using granulocyte colony-stimulating factor (G-CSF) to target and activate neutrophils, cells of the innate immune system. G-CSF is a leukocyte stimulating molecule which is commonly used in cancer patients to prevent or reduce neutropenia. We focused herein on developing a G-CSF nanocarrier which could increase the in vivo circulation time of this cytokine, keeping it active for targeting the spleen, an important reservoir of neutrophils. G-CSF-functionalized silica and gold nanoparticles were developed. Silica nanoparticles of 50 nm diameter were functionalized by a solid phase synthesis approach. The technology enable…
Minor changes in the macrocyclic ligands but major consequences on the efficiency of gold nanoparticles designed for radiosensitization
International audience; Many studies have been devoted to adapting the design of gold nanoparticles to efficiently exploit their promising capability to enhance the effects of radiotherapy. In particular, the addition of magnetic resonance imaging modality constitutes an attractive strategy for enhancing the selectivity of radiotherapy since it allows the determination of the most suited delay between the injection of nanoparticles and irradiation. This requires the functionalization of the gold core by an organic shell composed of thiolated gadolinium chelates. The risk of nephrogenic systemic fibrosis induced by the release of gadolinium ions should encourage the use of macrocyclic chelat…
The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy
International audience; A new efficient type of gadolinium-based theranostic agent (AGuIX) has recently been developed for magnetic resonance imaging (MRI)-guided radiotherapy. These new particles consist of a polysiloxane network surrounded by a number of gadolinium chelates, usually 10. Due to their small size (<5 nm), AGuIX typically exhibit biodistributions that are almost ideal for diagnostic and therapeutic purposes. For example, while a significant proportion of these particles accumulate in tumours, the remainder is rapidly eliminated by the renal route. In addition, these particles present no evidence of toxicity, in the absence of irradiation with up to 10 times the planned dose f…
Multi-modal image fusion for small animal studies in in-line PET /3T MRI
Congrès sous l’égide de la Société Française de Génie Biologique et Médical (SFGBM).; National audience; In the framework of small animal multi-modal imaging, the current progression of the IMAPPI project is illustrated by the design of an in-line PET/MRI prototype, coupled to a dedicated multi-resolution registration method allowing the robust fusion of data coming from both modalities. The first results show a good alignment of the data from tumor imaging at the level of the abdomen.
Ultrasmall Rigid Particles as Multimodal Probes for Medical Applications
International audience; Ultrasmall but multifunctional: Rigid imaging particles that are smaller than 5 nm in size can be obtained in a top-down process starting from a core–shell structure (core=gadolinium oxide; shell=polysiloxane). They represent the first multifunctional silica-based particles that are sufficiently small to escape hepatic clearance and enable animal imaging by four complementary techniques.
AGuIX® from bench to bedside-Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine.
International audience; AGuIX® are sub-5 nm nanoparticles made of a polysiloxane matrix and gadolinium chelates. This nanoparticle has been recently accepted in clinical trials in association with radiotherapy. This review will summarize the principal preclinical results that have led to first in man administration. No evidence of toxicity has been observed during regulatory toxicity tests on two animal species (rodents and monkeys). Biodistributions on different animal models have shown passive uptake in tumours due to enhanced permeability and retention effect combined with renal elimination of the nanoparticles after intravenous administration. High radiosensitizing effect has been obser…
Quality control of gold nanoparticles as pharmaceutical ingredients
Abstract Nanoparticles are being developed for a wide range of medical applications such as, controlled release, drug delivery systems or imagery, theranostics, implants…. For the moment, there is no legal definition of nanoparticles or nanomaterials for therapeutic use. The specific case of gold nanoparticles is not an exception: their current definition as nanoparticle material does not correspond to classic pharmaceutical ingredients as described in Pharmacopoeias. In this study, more than 30 different batches of citrate stabilized gold nanoparticles (AuNP) were synthesized and analyzed thanks to both classical approaches (UV–Vis spectrophotometry, dynamic light scattering coupled or not…
The contribution of hydrogen peroxide to the radiosensitizing effect of gold nanoparticles
Abstract Plasmid DNA in aerated aqueous solution is used as a probe to determine whose of the reactive oxygen species (ROS) generated after absorption of ultra-soft X-rays (USX) take part in biomolecule damage in the presence and in absence of Gold Nano-Particles (GNP) and specific scavengers. Citrate-coated GNPs with core sizes of 6, 10 and 25 nm are synthetized and characterized, especially in terms of plasmon band shift, ζ-potential and hydrodynamic radii (respectively 9, 21 and 30 nm). We confirm the radiosensitizing effect of GNP and show that the SSB number per plasmid increases when, for a same mass of gold element, the core size of the gold nanoparticles decreases. Hydroxyl radicals…
Local multifractal analysis of marked spatial point processes
In this paper, we develop a methodology for the local estimation of multifractal properties in random 2D fields. The main novelty of our approach lies in introducing a local average of one-dimensional increments, rendering the analysis applicable not only for fully defined images but also for any marked point process where information is not ubiquitously available, e.g. in the context of geospatial data analysis and modeling. We demonstrate the robustness of the estimation by deploying the methodology on a multifractal random field defined as a marked 2D point pattern with three different underlying supports: an equidistant grid (or image), a self-similar and a multifractal Sierpinski carpe…
Functionalization of theranostic AGuIX® nanoparticles for PET/MRI/optical imaging
International audience; A novel trifunctional imaging probe containing a chelator of radiometal for PET, a NIR heptamethine cyanine dye, and a bioconjugatable handle, has been grafted onto AGuIX® nanoparticles via a Michael addition reaction. The resulting functionalized nanoparticles have been fully characterized, radiolabelled with 64Cu, and evaluated in a mice TSA tumor model using multimodal (PET/MRI/optical) imaging.
One-pot direct synthesis for multifunctional ultrasmall hybrid silica nanoparticles
International audience; Ultrasmall silica nanoparticles (NPs), having hydrodynamic diameters under 10 nm are promising inorganic platforms for imaging and therapeutic applications in medicine. Herein is described a new way for synthesizing such kind of NPs in a one-pot scalable protocol. These NPs bear DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) ligands on their surface that can chelate different metals suitable for a wide variety of biomedical applications. By varying the ratio of the precursors, the hydrodynamic diameters of the particles can be controlled over the range of 3 to 15 nm. The resulting NPs have been characterized extensively by complementary techniques li…