0000000000597629
AUTHOR
Matteo Conforti
Propagation, Stability and Interactions of Novel Three-Wave Parametric Solitons
International audience; We found a new class of analytic soliton solutions that describe the parametric wave mixing of optical pulses in quadratic nonlinear crystals. We analyze the stability properties, interactions and collisions of these solitons.
Baseband modulation instability as the origin of rogue waves
International audience; We study the existence and properties of rogue-wave solutions in different nonlinear wave evolution models that are commonly used in optics and hydrodynamics. In particular, we consider the Fokas-Lenells equation, the defocusing vector nonlinear Schrödinger equation, and the long-wave-shortwave resonance equation. We show that rogue-wave solutions in all of these models exist in the subset of parameters where modulation instability is present if and only if the unstable sideband spectrum also contains cw or zero-frequency perturbations as a limiting case (baseband instability). We numerically confirm that rogue waves may only be excited from a weakly perturbed cw whe…
Manakov Polarization Modulation Instability in Normal Dispersion Optical Fiber
We observed polarization modulation instability in the normal dispersion regime of randomly birefringent multi-km telecom optical fiber. The instability is pumped by two wavelength multiplexed and orthogonally polarized intense continuous lasers.
Turbulent Dynamics of an Incoherently Pumped Passive Optical Fibre Cavity: quasi-solitons and dispersive waves
International audience; We study numerically and experimentally the dynamics of an incoherently pumped passive optical fibre ring cavity. We show that the cavity exhibits a quasi-soliton turbulence dynamics, whose properties are controlled by the degree of coherence of the injected pump wave: as the coherence of the pump is degraded, the cavity exhibits a transition from the quasi-soliton turbulent regime toward the weakly nonlinear turbulent regime characterized by short-lived rogue wave events. This behavior is reminiscent of the corresponding dynamics obtained in the purely conservative (Hamiltonian) problem. Experimental results are reported by using a standard telecommunication optical…
Propagation and Stability of Novel Parametric Interaction Solitons
International audience; We present a new multi-parameter family of analytical soliton solutions for nonlinear three-wave resonant interactions. We show the amplitude, phase-front shapes and general properties of the solitons. The stability of these novel parametric solitons is simply related to the value of their common group velocity.
Frequency tunable polarization and intermodal modulation instability in high birefringence holey fiber
International audience; We present an experimental analysis of polarization and intermodal noise-seeded parametric amplification, in which dispersion is phase matched by group velocity mismatch between either polarization or spatial modes in birefringent holey fiber with elliptical core composed of a triple defect. By injecting quasi-CW intense linearly polarized pump pulses either parallel or at 45 degrees with respect to the fiber polarization axes, we observed the simultaneous generation of polarization or intermodal modulation instability sidebands. Furthermore, by shifting the pump wavelength from 532 to 625 nm, we observed a shift of polarization sidebands from 3 to 8 THz, whereas int…
Observation of Manakov polarization modulation instability in the normal dispersion regime of randomly birefringent telecom optical fiber
Elargissement spectral d’impulsions par ondes de choc dispersives dans les fibres optiques
National audience; Nous étudions l’élargissement spectral induit par ondes de choc dispersives d’impulsions générées par modulation électro-optique dans une fibre optique en dispersion normale.
Polarization modulation instability in a Manakov fiber system
International audience; The Manakov model is the simplest multicomponent model of nonlinear wave theory: It describes elementary stable soliton propagation and multisoliton solutions, and it applies to nonlinear optics, hydrodynamics, and Bose-Einstein condensates. It is also of fundamental interest as an asymptotic model in the context of the widely used wavelength-division-multiplexed optical fiber transmission systems. However, although its physical relevance was confirmed by the experimental observation of Manakov (vector) solitons in a planar waveguide in 1996, there have in fact been no quantitative experiments confirming its validity for nonlinear dynamics other than soliton formatio…
Parametric Frequency Conversion of Short Optical Pulses Controlled by a CW Background
International audience; We predict that parametric sum-frequency generation of an ultra-short pulse may result from the mixing of an ultra-short optical pulse with a quasi-continuous wave control. We analytically show that the intensity, time duration and group velocity of the generated idler pulse may be controlled in a stable manner by adjusting the intensity level of the background pump.
Observation of Frequency Tunable Cross-Phase Modulation Instabilities in Highly Birefringent Photonic Crystal Fiber
We observed frequency tunable modulation instability owing to cross-phase modulation in normal group velocity dispersion regime of a birefringent holey fiber. Sideband shifts were 3-8 THz for polarization and 30-60 THz for modal instabilities.
Stable control of pulse speed in parametric three-wave solitons.
International audience; We analyze the control of the propagation speed of three wave packets interacting in a medium with quadratic nonlinearity and dispersion. We find analytical expressions for mutually trapped pulses with a common velocity in the form of a three-parameter family of solutions of the three-wave resonant interaction. The stability of these novel parametric solitons is simply related to the value of their common group velocity.
Inelastic scattering and interactions of three-wave parametric solitons.
We study the interactions of velocity-locked three-wave parametric solitons in a medium with quadratic nonlinearity and dispersion. We reveal that the inelastic scattering between three-wave solitons and linear waves may be described in terms of analytical solutions with dynamically varying group velocity, or boomerons. Moreover, we demonstrate the elastic nature of three-wave soliton-soliton collisions and interactions.
Optical Dark Rogue Wave
AbstractPhotonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena and lead to novel space-time analogies, for example with multi-parti…
Parametric frequency conversion of optical simulton pulses
We present an analytical description of the parametric frequency conversion of short solitary wave optical pulses in quadratic nonlinear crystals controlled by means of a continuous wave background.