0000000000598705

AUTHOR

Günter Edlinger

Functional Near Infrared Spectroscopy System Validation for Simultaneous EEG-FNIRS Measurements

Functional near-infrared spectroscopy (fNIRS) applied to brain monitoring has been gaining increasing relevance in the last years due to its not invasive nature and the capability to work in combination with other well–known techniques such as the EEG. The possible use cases span from neural-rehabilitation to early diagnosis of some neural diseases. In this work a wireline FPGA–based fNIRS system, that use SiPM sensors and dual-wavelength LED sources, has been designed and validated to work with a commercial EEG machine without reciprocal interference.

research product

Assessing Command-Following and Communication With Vibro-Tactile P300 Brain-Computer Interface Tools in Patients With Unresponsive Wakefulness Syndrome

Persons diagnosed with disorders of consciousness (DOC) typically suffer from motor disablities, and thus assessing their spared cognitive abilities can be difficult. Recent research from several groups has shown that non-invasive brain-computer interface (BCI) technology can provide assessments of these patients' cognitive function that can supplement information provided through conventional behavioral assessment methods. In rare cases, BCIs may provide a binary communication mechanism. Here, we present results from a vibrotactile BCI assessment aiming at detecting command-following and communication in 12 unresponsive wakefulness syndrome (UWS) patients. Two different paradigms were admi…

research product

Fiberless, Multi-Channel fNIRS-EEG System Based on Silicon Photomultipliers: Towards Sensitive and Ecological Mapping of Brain Activity and Neurovascular Coupling

Portable neuroimaging technologies can be employed for long-term monitoring of neurophysiological and neuropathological states. Functional Near-Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG) are highly suited for such a purpose. Their multimodal integration allows the evaluation of hemodynamic and electrical brain activity together with neurovascular coupling. An innovative fNIRS-EEG system is here presented. The system integrated a novel continuous-wave fNIRS component and a modified commercial EEG device. fNIRS probing relied on fiberless technology based on light emitting diodes and silicon photomultipliers (SiPMs). SiPMs are sensitive semiconductor detectors, whose large…

research product